public class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
if (len == 0) {
return false;
}
int sum = 0;
for (int num : nums) {
sum += num;
}
// 特判:如果是奇数,就不符合要求
if ((sum & 1) == 1) {
return false;
}
int target = sum / 2;
// 创建二维状态数组,行:物品索引,列:容量(包括 0)
boolean[][] dp = new boolean[len][target + 1];
// 先填表格第 0 行,第 1 个数只能让容积为它自己的背包恰好装满
if (nums[0] <= target) {
dp[0][nums[0]] = true;
}
// 再填表格后面几行
for (int i = 1; i < len; i++) {
for (int j = 0; j <= target; j++) {
// 直接从上一行先把结果抄下来,然后再修正
dp[i][j] = dp[i - 1][j];
// 当前nums[i]自身能组成的和
if (nums[i] == j) {
dp[i][j] = true;
}
// dp[i - 1][j - nums[i]]代表前面的元素加上当前nums[i]能形成的和(不超过target)
if (nums[i] < j) {
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];
}
}
// 剪枝,只要表格的最后一列是true,代码就可以结束
if (dp[i][target]) {
return true;
}
}
return dp[len - 1][target];
}
}
// 状态数组压缩到 1 行的时候,需要“从后前向”填表
// “从后向前” 写的过程中,一旦 nums[i] <= j 不满足,可以马上退出当前循环,
// 因为后面的 j 的值肯定越来越小,没有必要继续做判断,直接进入外层循环的下一层。
// 相当于也是一个剪枝,这一点是“从前向后”填表所不具备的。
class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
if (len == 0) return false;
int sum = 0;
for (int num : nums) {
sum += num;
}
if ((sum & 1) == 1) return false;
int target = sum / 2;
boolean[] dp = new boolean[target + 1];
dp[0] = true;
if (nums[0] <= target) {
dp[nums[0]] = true;
}
for (int i = 1; i < len; i++) {
for (int j = target; nums[i] <= j; j--) {
if (dp[target]) {
return true;
}
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[target];
}
}
leetcode416. 分割等和子集
最新推荐文章于 2022-11-05 18:44:03 发布