快慢指针算法(Floyd 判圈算法)

快慢指针(又称龟兔赛跑算法)是一种常用的链表操作技巧,通过两个移动速度不同的指针遍历链表,用于解决链表中环检测、中点查找等问题。以下是其核心应用场景和实现方法:

1. 链表环检测
  • 问题描述: 判断链表中是否存在环。

  • 算法思路:

    • 慢指针(slow)每次移动 1 步。
    • 快指针(fast)每次移动 2 步。
    • 若存在环,快指针会追上慢指针(即相遇,slow == fast)。
    • 若无环,快指针会先到达链表尾部(null)。
  • 代码实现:

    function hasCycle(head) {
        if (!head) return false;
        let slow = head;
        let fast = head.next;
        
        while (slow !== fast) {
            if (!fast || !fast.next) return false;
            slow = slow.next;
            fast = fast.next.next;
        }
        return true;
    }
    
  • 复杂度分析:

    • 时间复杂度: O (n),快指针最多遍历 2n 步。
    • 空间复杂度: O (1),仅需两个指针。
2. 寻找链表中点
  • 问题描述: 找到链表的中间节点(若节点数为偶数,返回中间两个节点的任意一个)。

  • 算法思路:

    • 慢指针每次移动 1 步。
    • 快指针每次移动 2 步。
    • 当快指针到达尾部时,慢指针恰好位于中点。
  • 代码实现:

    function middleNode(head) {
        let slow = head;
        let fast = head;
        
        while (fast && fast.next) {
            slow = slow.next;
            fast = fast.next.next;
        }
        return slow;
    }
    

3. 寻找环的入口节点

  • 问题描述:若链表存在环,找到环的入口节点。

  • 算法思路:

    • 步骤 1: 使用快慢指针判断是否存在环,并找到相遇点。
    • 步骤 2: 相遇后,将慢指针重新指向头节点,快指针保持在相遇点。
    • 步骤 3: 慢指针和快指针同时移动 1 步,再次相遇的位置即为环的入口。
  • 代码实现:

    function detectCycle(head) {
        if (!head) return null;
        let slow = head;
        let fast = head;
        
        // 找到相遇点
        while (fast && fast.next) {
            slow = slow.next;
            fast = fast.next.next;
            if (slow === fast) break;
        }
        
        // 若无环,返回null
        if (!fast || !fast.next) return null;
        
        // 慢指针回到头节点,再次相遇即为入口
        slow = head;
        while (slow !== fast) {
            slow = slow.next;
            fast = fast.next;
        }
        
        return slow;
    }
    
4. 链表倒数第 k 个节点
  • 问题描述: 找到链表的倒数第 k 个节点。

  • 算法思路:

    • 快指针先移动 k 步。
    • 慢指针和快指针同时移动 1 步,直到快指针到达尾部。
    • 此时慢指针即为倒数第 k 个节点。
  • 代码实现:

    function findKthFromEnd(head, k) {
        let slow = head;
        let fast = head;
        
        // 快指针先走k步
        for (let i = 0; i < k; i++) {
            if (!fast) return null;
            fast = fast.next;
        }
        
        // 同步移动至快指针到达尾部
        while (fast) {
            slow = slow.next;
            fast = fast.next;
        }
        
        return slow;
    }
    
总结
  • 快慢指针算法通过速度差,巧妙地解决了链表中的多种问题。其核心在于:

    • 环检测:快慢指针相遇则有环。
    • 中点查找:快指针到尾时慢指针在中点。
    • 环入口定位:相遇点和头节点同时移动再次相遇处。
    • 倒数第 k 个节点:快指针先走 k 步后同步移动。

该算法时间复杂度均为 O (n),空间复杂度为 O (1),是链表操作中的经典技巧。

### Floyd算法的数学证明过程 Floyd算法的核心在于通过两个速度不同的指针(通常称为快指针和慢指针)来检测链表或其他数据结构中是否存在环。以下是该算法的数学证明过程: #### 1. 基本假设 设链表存在环,其结构分为两部分: - **非环部分**:从链表头节点到进入环的第一个节点的距离记为 \( d \)。 - **环的部分**:环的总长度记为 \( C \),其中任意一点回到自身的距离等于环的周长。 定义两个指针: - 慢指针每次移动一步; - 快指针每次移动两步。 当两者都从链表头部出发时,如果链表中有环,则它们最终会在某个位置相遇[^1]。 --- #### 2. 相遇条件分析 令慢指针走了 \( k \) 步后与快指针首次相遇于某点 \( P \)。此时满足以下关系: - 慢指针走过的路径长度为 \( s = d + mC \),表示它先走过非环部分 \( d \),再绕环若干次(\( m \) 表示绕环次数)到达相遇点。 - 快指针走过的路径长度为 \( f = d + nC \),同样包括非环部分 \( d \) 和绕环多次(\( n \) 表示绕环次数)到达相同点。 由于快指针的速度是慢指针的两倍,因此有: \[ f = 2s \] 代入上述表达式得到: \[ d + nC = 2(d + mC) \] 化简得: \[ d + nC = 2d + 2mC \] 进一步整理得出: \[ d = (n - 2m)C \] 这表明,从链表头节点到环入口的距离 \( d \) 是环周长 \( C \) 的整数倍差值[^3]。 --- #### 3. 找到环的起点 为了找到环的具体起始点,在第一次相遇之后,可以让其中一个指针返回链表头节点,并让另一个指针保持在当前位置不变。随后,这两个指针均以相同的速率前进(每轮只前进一步)。再次相遇的位置即为环的起点。 原因如下: - 设当前相遇点离环入口还有距离 \( x \)。 - 则另一条路径上的剩余距离也为 \( x \)。 因为之前已经知道 \( d = (n - 2m)C \),所以重新同步后的两条路径会恰好在同一时间抵达环的入口处。 --- #### 4. 总结 综上所述,利用快慢指针的方法不仅能够有效断链表是否存在环,还可以定位环的起点。整个过程中涉及的关键数学原理主要是基于模运算性质以及周期性的特性[^2]。 ```python def detectCycle(head): slow, fast = head, head while fast and fast.next: slow = slow.next # 移动一步 fast = fast.next.next # 移动两步 if slow == fast: # 如果相遇则说明有环 break if not fast or not fast.next: return None # 链表无环的情况 slow = head # 将slow重置回head while slow != fast: slow = slow.next fast = fast.next # 同速前进直到再次相遇 return slow # 返回环的起点 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值