专业学习|一文了解并实操自适应大邻域搜索(讲解&代码)

一、自适应大邻域搜索概念介绍

        自适应大邻域搜索(Adaptive Large Neighborhood SearchALNS)是一种用于解决组合优化问题的元启发式算法。以下是关于它的详细介绍:

### 自适应大邻域搜索算法概述 自适应大邻域搜索算法(Adaptive Large Neighborhood Search, ALNS)是一种启发式方法,由Ropke与Pisinger在2006年提出。该算法通过增加对算子作用效果的衡量机制,在传统邻域搜索基础上实现了更高效的解空间探索[^1]。 #### 原理 ALNS的核心在于动态调整破坏和修复操作的选择概率。具体来说: - **初始化阶段**:构建初始可行解设定各算子权重。 - **迭代过程**: - 随机选取一对破坏/修复算子组合; - 执行选定的操作序列来更新当前解; - 根据新旧解质量差异评估此次变动成效; - 更新相应算子得分及其被选中的可能性分布。 这种策略使得ALNS能够在运行过程中不断优化自身参数配置,进而提高找到优质近似最优解的概率[^4]。 ```python import random from typing import List, Tuple class Solution: def __init__(self): self.routes = [] # type: List[List[int]] def alns_algorithm(initial_solution: Solution, destroy_operators: List['DestroyOperator'], repair_operators: List['RepairOperator']) -> Solution: best_solution = initial_solution.copy() current_solution = initial_solution while not stopping_criteria_met(): selected_destroy_operator = select_operator(destroy_operators) selected_repair_operator = select_operator(repair_operators) new_solution = apply_operations(current_solution, selected_destroy_operator, selected_repair_operator) if accept_new_solution(new_solution, current_solution): current_solution = new_solution if is_better_than_best(best_solution, new_solution): best_solution = new_solution update_operator_weights(selected_destroy_operator, selected_repair_operator, evaluate_change(current_solution)) return best_solution ``` #### 应用场景 ALNS广泛应用于物流配送领域内的多种变体车辆路径规划问题(Vehicle Routing Problem),包括但不限于: - 单一仓库出发返回型(CVRP)[^5] - 多起点终点(MDCVRP)[^2] - 含有时段约束条件(VRPTW)[^3] 这些实际案例表明了ALNS对于解决具有不同侧重点的实际运输调度难题具备良好的通用性和灵活性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

封印师请假去地球钓鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值