何谓莫队
一种将询问以一种特定的顺序处理来支持离线处理区间询问的算法。
实现方式
举个栗子:
给一个长为 n n n的序列,取出其中的一段区间 [ L , R ] [L,R] [L,R],问其中有多少种不同的数字。 n ≤ 5 × 1 0 4 n\le5\times10^4 n≤5×104
如果有一段区间 [ L , R ] [L,R] [L,R]中的数为 { 1 , 1 , 2 , 3 , 1 , 2 , 4 } \{1,1,2,3,1,2,4\} {1,1,2,3,1,2,4},我们思考将其变为 [ L , R − 1 ] [L,R-1] [L,R−1]与 [ L , R + 1 ] [L,R+1] [L,R+1]答案的变化。
我们记录一下每个数的出现次数,如果区间变为 [ L , R − 1 ] [L,R-1] [L,R−1],那么 4 4 4的出现次数就由 1 1 1变为 0 0 0,所以 4 4 4就不在当前的区间中,种类数 − 1 -1 −1。
再思考区间变为 [ L , R + 1 ] [L,R+1] [L,R+1]的情况,如果加入的是 3 3 3,那么 3 3 3的出现次数由 1 1 1变为 2 2 2,对答案无任何影响,但如果加入的是 5 5 5,那么 5 5 5的出现次数由 0 0 0变为 1 1 1,答案 + 1 +1 +1。
区间变为 [ L − 1 , R ] [L-1,R] [L−1,R]和 [ L + 1 , R ] [L+1,R] [L+1,R]的情况同理。
所以对于两个询问 [ 2 , 3 ] [2,3] [2,3]与 [ 1 , 5 ] [1,5] [1,5],我们只需移动两次右区间,移动一次左区间,所以我们就得到了一个上界为 O ( n 2 ) O(n^2) O(n2)的算法,但对于随机数据远远跑不满。
但这样还远远不够,在极端数据下,算法还是 O ( n 2 ) O(n^2) O(n2)的时间复杂度。所以我们可以想到将询问以另外的一种顺序进行处理,来使得时间复杂度更小。
一种想法是将询问的左端点进行分块,排序时第一关键字为左端点的块的编号,第二关键字为右端点的大小,这样做会使时间复杂度达到 O ( n n ) O(n\sqrt n) O(nn)。
时间复杂度证明
下面的证明均假设 n , m n,m n,m同阶。
左端点所在的块是单调递增的,所以每次询问左端点最多在一个块内移动,最坏从最右端移到最左端,所以最坏移动次数为 n n n\sqrt n nn。
当左端点在同一块内时,右端点单调递增,最坏总移动步数为 O ( n n ) O(n\sqrt n) O(nn),左端点移动到另一个块时,右端点最坏从 n n n移动到 1 1 1,时间复杂度 O ( n n ) O(n\sqrt n) O(nn)。
综上,总时间复杂度为 O ( n n ) O(n\sqrt n) O(nn)。
代码(HH的项链)
#include<bits/stdc++.h>
using namespace std;
struct node{
int l,r,id,pos,ans;
}b[1000005];
int a[1000005],cnt[1000005],now=0,len,l=1,r=0;
int Read(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-1;
ch=getchar();
}
while(isdigit(ch)){
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return x*f;
}
bool cmp1(node p,node q){
if(p.pos!=q.pos) return p.pos<q.pos;
return p.r<q.r;
}
bool cmp2(node p,node q){
return p.id<q.id;
}
void Del(int x){
cnt[a[x]]--;
if(!cnt[a[x]]) now--;
}
void Ins(int x){
if(!cnt[a[x]]) now++;
cnt[a[x]]++;
}
void query(int x){
int L=b[x].l,R=b[x].r;
while(r<R) Ins(++r);
while(l>L) Ins(--l);
while(r>R) Del(r--);
while(l<L) Del(l++);
b[x].ans=now;
}
int main(){
int n,m;
n=Read();
len=sqrt(n);
for(int i=1;i<=n;i++){
a[i]=Read();
}
m=Read();
for(int i=1;i<=m;i++){
b[i].l=Read();
b[i].r=Read();
b[i].id=i;
b[i].pos=b[i].l/len;
}
sort(b+1,b+m+1,cmp1);
for(int i=1;i<=m;i++){
query(i);
}
sort(b+1,b+m+1,cmp2);
for(int i=1;i<=m;i++){
cout<<b[i].ans<<endl;
}
}
注意
当使用莫队算法时要注意先扩再缩,例如从 [ 1 , 5 ] [1,5] [1,5]到 [ 6 , 10 ] [6,10] [6,10]时,如果先移动左端点,那么就会区间就会变为 [ 6 , 5 ] [6,5] [6,5],会导致不必要的 R E RE RE。
//正确写法
while(r<R) Ins(++r);
while(l>L) Ins(--l);
while(r>R) Del(r--);
while(l<L) Del(l++);