【R语言】缺失值

      数据集中往往存在缺失值,在进行数据分析前需要了解数据的缺失值情况。R语言中的一些基本函数可用于查询缺失数据,另外还有一些第三方包可用于查询和处理数据缺失。

     基本的缺失值查询可以通过is.na()和complete.cases()函数,当存在缺失值NA或者NAN时is.na()返回TRUE, complete.cases()则返回FALSE。

#使用PimaIndiansDiabetes2数据集
require(mlbench)
data("PimaIndiansDiabetes2", package = 'mlbench')
#返回总的缺失值的个数和百分比(TRUE等价于1,FALSE等价于0)
sum(is.na(PimaIndiansDiabetes2))
mean(is.na(PimaIndiansDiabetes2))
#统计每行的缺失个数
rowmissing <- apply(PimaIndiansDiabetes2, 1,      
function(x){sum(is.na(x))})
#统计每列的缺失个数
colmissing <- apply(PimaIndiansDiabetes2, 2, 
function(x){sum(is.na(x))})

#返回没有缺失值的行
PimaIndiansDiabetes2[complete.cases(PimaIndiansDiabetes2),]
#返回包含一个或多个缺失值的行
PimaIndiansDiabetes2[!complete.cases
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值