【自适应盲均衡3】多模算法(MMA)——复数改进常模算法(MCMA)的理论推导与MATLAB仿真

本文详细介绍了基于CMA改进的复数改进常模算法(MCMA),包括理论推导、代价函数、梯度计算以及MATLAB仿真过程。通过仿真展示了MCMA在不同迭代步长下的性能,证实了其相对于CMA的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重要声明:为防止爬虫和盗版贩卖,文章中的核心代码和数据集可凭【CSDN订阅截图或公号付费截图】私信免费领取,一律不认其他渠道付费截图!

接上篇【自适应均衡2】多径衰落信道的复数常模算法(CMA)的理论推导与MATLAB仿真

在这里插入图片描述

理论推导

MMA或者MCMA其实是在CMA基础上改进而得到的,有学者称其为实虚部分开的常模算法。该算法使均衡器输出信号的实部与虚部分别收敛于各自的模值,改变了CMA对相位不敏感的特性。

代价函数

同上一篇,当p=q=2时,CMA的代价函数可以写为

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codersnote

对学生党 赞赏是鼓励也是鞭策!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值