Python办公软件自动化,5分钟掌握openpyxl操作!

今天给大家分享一篇用openpyxl操作Excel的文章。

各种数据需要导入Excel?多个Excel要合并?目前,Python处理Excel文件有很多库,openpyxl算是其中功能和性能做的比较好的一个。接下来我将为大家介绍各种Excel操作。

打开Excel文件

新建一个Excel文件

    >>> from openpyxl import Workbook
    >>> wb = Workbook()

打开现有Excel文件

    >>> from openpyxl import load_workbook
    >>> wb2 = load_workbook('test.xlsx')

打开大文件时,根据需求使用只读或只写模式减少内存消耗。

wb = load_workbook(filename='large_file.xlsx', read_only=True)

wb = Workbook(write_only=True)

获取、创建工作表

获取当前活动工作表:

    >>> ws = wb.active

创建新的工作表:

 >>> ws1 = wb.create_sheet("Mysheet") # insert at the end (default)
    # or
    >>> ws2 = wb.create_sheet("Mysheet", 0) # insert at first position
    # or
    >>> ws3 = wb.create_sheet("Mysheet", -1) # insert at the penultimate position

使用工作表名字获取工作表:

    >>> ws3 = wb["New Title"]

获取所有的工作表名称:

    >>> print(wb.sheetnames)
    ['Sheet2', 'New Title', 'Sheet1']
使用for循环遍历所有的工作表:

    >>> for sheet in wb:
    ...     print(sheet.title)

保存

保存到流中在网络中使用:

   >>> from tempfile import NamedTemporaryFile
    >>> from openpyxl import Workbook
    >>> wb = Workbook()
    >>> with NamedTemporaryFile() as tmp:
            wb.save(tmp.name)
            tmp.seek(0)
            stream = tmp.read()
保存到文件:

    >>> wb = Workbook()
    >>> wb.save('balances.xlsx')
保存为模板:

    >>> wb = load_workbook('document.xlsx')
    >>> wb.template = True
    >>> wb.save('document_template.xltx')

单元格

单元格位置作为工作表的键直接读取:

   >>> c = ws['A4']

为单元格赋值:

    >>> ws['A4'] = 4
    >>> c.value = 'hello, world'

多个单元格 可以使用切片访问单元格区域:

    >>> cell_range = ws['A1':'C2']

使用数值格式:

 >>> # set date using a Python datetime
    >>> ws['A1'] = datetime.datetime(2010, 7, 21)
    >>>
    >>> ws['A1'].number_format
    'yyyy-mm-dd h:mm:ss'

使用公式:

    >>> # add a simple formula
    >>> ws["A1"] = "=SUM(1, 1)"

合并单元格时,除左上角单元格外,所有单元格都将从工作表中删除:

   >>> ws.merge_cells('A2:D2')
    >>> ws.unmerge_cells('A2:D2')
    >>>
    >>> # or equivalently
    >>> ws.merge_cells(start_row=2, start_column=1, end_row=4, end_column=4)
    >>> ws.unmerge_cells(start_row=2, start_column=1, end_row=4, end_column=4) 

行、列

可以单独指定行、列、或者行列的范围:

    >>> colC = ws['C']
    >>> col_range = ws['C:D']
    >>> row10 = ws[10]
    >>> row_range = ws[5:10]

可以使用Worksheet.iter_rows()方法遍历行:

  >>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
    ...    for cell in row:
    ...        print(cell)
    <Cell Sheet1.A1>
    <Cell Sheet1.B1>
    <Cell Sheet1.C1>
    <Cell Sheet1.A2>
    <Cell Sheet1.B2>
    <Cell Sheet1.C2>

同样的Worksheet.iter_cols()方法将遍历列:

   >>> for col in ws.iter_cols(min_row=1, max_col=3, max_row=2):
    ...     for cell in col:
    ...         print(cell)
    <Cell Sheet1.A1>
    <Cell Sheet1.A2>
    <Cell Sheet1.B1>
    <Cell Sheet1.B2>
    <Cell Sheet1.C1>
    <Cell Sheet1.C2>

遍历文件的所有行或列,可以使用Worksheet.rows属性:

   >>> ws = wb.active
    >>> ws['C9'] = 'hello world'
    >>> tuple(ws.rows)
    ((<Cell Sheet.A1>, <Cell Sheet.B1>, <Cell Sheet.C1>),
    (<Cell Sheet.A2>, <Cell Sheet.B2>, <Cell Sheet.C2>),
    (<Cell Sheet.A3>, <Cell Sheet.B3>, <Cell Sheet.C3>),
    (<Cell Sheet.A4>, <Cell Sheet.B4>, <Cell Sheet.C4>),
    (<Cell Sheet.A5>, <Cell Sheet.B5>, <Cell Sheet.C5>),
    (<Cell Sheet.A6>, <Cell Sheet.B6>, <Cell Sheet.C6>),
    (<Cell Sheet.A7>, <Cell Sheet.B7>, <Cell Sheet.C7>),
    (<Cell Sheet.A8>, <Cell Sheet.B8>, <Cell Sheet.C8>),
    (<Cell Sheet.A9>, <Cell Sheet.B9>, <Cell Sheet.C9>))

Worksheet.columns属性:

    >>> tuple(ws.columns)
    ((<Cell Sheet.A1>,
    <Cell Sheet.A2>,
    <Cell Sheet.A3>,
    <Cell Sheet.A4>,
    <Cell Sheet.A5>,
    <Cell Sheet.A6>,
    ...
    <Cell Sheet.B7>,
    <Cell Sheet.B8>,
    <Cell Sheet.B9>),
    (<Cell Sheet.C1>,
    <Cell Sheet.C2>,
    <Cell Sheet.C3>,
    <Cell Sheet.C4>,
    <Cell Sheet.C5>,
    <Cell Sheet.C6>,
    <Cell Sheet.C7>,
    <Cell Sheet.C8>,
    <Cell Sheet.C9>))

使用Worksheet.append()或者迭代使用Worksheet.cell()新增一行数据:

  >>> for row in range(1, 40):
    ...     ws1.append(range(600))

    >>> for row in range(10, 20):
    ...     for col in range(27, 54):
    ...         _ = ws3.cell(column=col, row=row, value="{0}".format(get_column_letter(col)))

插入操作比较麻烦。可以使用Worksheet.insert_rows()插入一行或几行:

   >>> from openpyxl.utils import get_column_letter
     >>> ws.insert_rows(7) 
     >>> row7 = ws[7]
     >>> for col in range(27, 54):
    ...         _ = ws3.cell(column=col, row=7, value="{0}".format(get_column_letter(col)))

Worksheet.insert_cols()操作类似。Worksheet.delete_rows()Worksheet.delete_cols()用来批量删除行和列。

只读取值

使用Worksheet.values属性遍历工作表中的所有行,但只返回单元格值:

    for row in ws.values:
       for value in row:
         print(value)

Worksheet.iter_rows()Worksheet.iter_cols()可以设置values_only参数来仅返回单元格的值:

  >>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2, values_only=True):
    ...   print(row)
    (None, None, None)
    (None, None, None)
# 关于Python学习指南

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取保证100%免费

点击免费领取《CSDN大礼包》:Python入门到进阶资料 & 实战源码 & 兼职接单方法 安全链接免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值