1.算法描述
给每个节点添加标签,初始以每个节点的id作为标签,标签传播过程中将每个节点的邻居节点的
标签中数量最多的标签作为该节点的标签。标签就代表该节点所属社区。
- 1 以节点id初始化标签
- 2 遍历每个节点,使用其邻居节点的标签中数量最多的标签更新其自身标签。
- 3 反复执行步骤2,直到满足终止条件。
关于终止条件
- 1 直接设置迭代次数
- 2 根据模块度的增加程度设定
- 3 每个节点的标签不再变化
- 4 其他
2.伪代码
中文:
输入:网络G=(V,E)具有|V|=n个节点和|E|=m条边,最大迭代次数maxt
输出:社团发现划分结果C={C1,C2,...Ck},k为社团数量
for each i in V
i.label = i
//每个节点分配唯一的标签
while 不满足终止条件
g.labeled();
t = t + 1;
3.模块度计算
模块度(Q,Modularity)是一种常用的衡量社团划分质量的标准。
常用的计算模块度的公式为:
Q = ∑ v = 1 k [ l v M − ( d v 2 M ) 2 ] Q=\sum\limits_{v=1}^k[\frac{l_v}{M}-(\frac{d_v}{2M})^2] Q=v=1∑