文章目录
线性DP
AcWing 898. 数字三角形
分析:
f[i,j] 这个状态表示一个集合,是所有从起点走到(i,j)的路径,f[i,j] 存的值是这条路径的最大值。
集合划分:
f[i,j] 可以划分为两部分:
① 来自 (i,j) 的左上方: f[i-1,j-1] + a[i][j]
② 来自 (i,j) 的右上方: f[i-1,j] + a[i][j]
#include<iostream>
#include<cstring>
using namespace std;
const int N = 505;
int f[N][N],a[N][N];
int main()
{
int n;
cin >> n;
for(int i=1; i<=n; i++)
for(int j=1; j<=i; j++)
cin >> a[i][j];
for(int i=1; i<=n; i++) //为了不算上j=1的左上方和j=i的正上方
{
f[i][0] = -1e9;
f[i][i+1] = -1e9;
}
f[1][1] = a[1][1];
for(int i=2; i<=n; i++)
for(int j=1; j<=i; j++)
f[i][j] = max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j]);
int res = -1e9;
for(int i=1; i<=n; i++) res = max(res,f[n][i]);
cout << res;
}
AcWing 895. 最长上升子序列
分析:
f[i] 这个状态表示一个集合,是所有以第 i 个数结尾的上升子序列,f[i] 存的值是每一个上升子序列长度的最大值。
集合划分:
f[i] 的划分可以以第 i-1 个数是谁来划分。可能是 a[1]、a[2]…a[i-1],也可能不存在,不存在说明子序列只有 a[i] 这一个数。即 f[i] = f[j] + 1(j=1、2、…、i-1 且 aj < ai)
#include<iostream>
using namespace std;
const int N = 1005;
int a[N], f[N];
int main()
{
int n;
cin >> n;
for(int i=1; i<=n; i++) cin >> a[i];
for(int i=1; i<=n; i++)
{
f[i] = 1; //只有 a[i] 这一个数
for(int j=1; j<i; j++)
if(a[j] < a[i]) f[i] = max(f[i],f[j]+1);
}
int res = 0;
for(int i=1; i<=n; i++) res = max(res,f[i]);
cout << res;
}
类似的一道题:zzuli 1304: 防御导弹
AcWing 897. 最长公共子序列
分析:
f[i,j] 这个状态表示一个集合,是所有在第一个序列的前 i 个字母中出现,且在第二个序列的前 j 个字母中出现的子序列,f[i,j] 存的值是每一个子序列长度的最大值。
集合划分:
f[i,j]可以划分为四种状态:
① 包含 a[i]、包含b[j]:f[i-1,j-1] + 1
② 不包含 a[i]、不包含b[j] : f[i-1,j-1]
③ 包含 a[i]、不包含b[j]: f[i,j-1],其实 f[i,j-1] 确实是不包含 b[j],但不一定包含 a[i],也就是说 f[i,j-1] 涵盖了 “包含 a[i]、不包含b[j]” 这种情况,这样算的话,肯定会有重复,但因为我们求的是最大值,所以重复算并不影响答案。
④ 不包含 a[i]、包含b[j]: f[i-1,j],同理③
能看出,③④这两种情况都是包含 ② 的,所以总的来说 f[i,j] 划分的三种情况是①③④
#include<iostream>
using namespace std;
const int N = 1005;
char a[N], b[N];
int f[N][N];
int main()
{
int n, m;
cin >> n >> m;
cin >> a+1 >> b+1;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
f[i][j] = max(f[i-1][j],f[i][j-1]);
if(a[i] == b[j]) f[i][j] = max(f[i][j],f[i-1][j-1]+1); //第④种情况只有a[i]=b[j]时才有的
}
cout << f[n][m];
}
AcWing 902. 最短编辑距离
分析:
f[i,j] 这个状态表示一个集合,是所有将 a[1 ~ i] 变成 b[i ~ j] 的操作方式,f[i,j] 存的值是所有操作方式的操作步骤的最小值。
集合划分:
f[i,j]可以根据 a 的最后一次操作划分为三种状态:
① a的最后一次操作是删除,那么删除 ai 后,a[1 ~ i] 和 b[1 ~ j] 匹配,所以要先做到 a[1 ~ i-1] 和 b[1 ~ j] 匹配,即 f[i-1,j] + 1
② a的最后一次操作是增加,那么插入一个数后 (这个数一一定是 bj),a[1 ~ i] 和 b[1 ~ j] 匹配,所以要先做到 a[1 ~ i] 和 b[1 ~ j-1] 匹配,即 f[i,j-1] + 1
③ a的最后一次操作是修改,将 ai 修改成 bj ,所以要先做到 a[1 ~ i-1] 和 b[1 ~ j-1] 匹配,即 f[i-1,j-1] + 1,但如果 ai 原本就和 bj 相等的话,那么就不用修改了,即 f[i-1,j-1] + 0
#include<iostream>
using namespace std;
const int N = 1005;
char a[N], b[N];
int f[N][N];
int main()
{
int n, m;
cin >> n >> a+1 >> m >> b+1;
for(int i=1; i<=m; i++) f[0][i] = i; //a的长度为0,变成b需要增加i个字母
for(int i=1; i<=n; i++) f[i][0] = i; //a的长度为i,变成b需要删除i个字母
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
if(a[i] == b[j]) f[i][j] = min(f[i][j], f[i-1][j-1]);
else f[i][j] = min(f[i][j], f[i-1][j-1] + 1);
}
cout << f[n][m];
}
AcWing 899. 编辑距离
#include<iostream>
#include<string.h>
using namespace std;
const int N = 15, M = 1005;
char a[M][N];
int f[N][N];
int n, m;
int pd(char a[],char b[])
{
int la = strlen(a+1), lb = strlen(b+1); //a、b的长度
for(int i=0; i<=lb; i++) f[0][i] = i;
for(int i=0; i<=la; i++) f[i][0] = i;
for(int i=1; i<=la; i++)
for(int j=1; j<=lb; j++)
{
f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
if(a[i] == b[j]) f[i][j] = min(f[i][j], f[i-1][j-1]);
else f[i][j] = min(f[i][j], f[i-1][j-1] + 1);
}
return f[la][lb];
}
int main()
{
cin >> n >> m;
for(int i=0; i<n; i++) cin >> a[i] + 1;
while(m--)
{
int limit, cnt = 0;
char b[N];
cin >> b+1 >> limit;
for(int i=0; i<n; i++)
if(pd(a[i],b) <= limit) cnt++;
cout << cnt << endl;
}
}
区间DP
AcWing 282. 石子合并
分析:
f[i,j] 这个状态表示一个集合,是所有将第 i 堆石子到第 j 堆石子合并成一堆石子的合并方式,f[i,j] 存的值是所有合并方式代价的最小值。
集合划分:
在合并第 i~j 堆石子时,以最后一次合并两堆石子的分界线 k 的位置来分类,s 是前缀和
#include<iostream>
using namespace std;
const int N = 305;
int s[N], f[N][N];
int main()
{
int n;
cin >> n;
for(int i=1; i<=n; i++)
{
cin >> s[i];
s[i] += s[i-1];
}
for(int len=2; len<=n; len++) //枚举长度,len从2开始,len=1时,只有一对石子,不用合并
for(int i=1; i+len-1<=n; i++) //枚举起点
{
int l = i, r = i+len-1; //区间起点、终点
f[l][r] = 1e9;
for(int k=l; k<r; k++)
f[l][r] = min(f[l][r],f[l][k] + f[k+1][r] + s[r] - s[l-1]);
}
cout << f[1][n];
}
计数类DP
AcWing 900. 整数划分
这一题可以按照完全背包的思想做
分析:
f[i,j] 这个状态表示一个集合,是所有从 1~ i 中选,总体积恰为 j 选法的集合。f[i,j] 存的值是从 1~ i 中选,总体积恰为 j 的选法的数量。
集合划分:
按照完全背包的思想,是按照第 i 个物品选几个来划分的(0/1/2/3…/s,s是最大能选第 i 个物品的个数)
f[i][j] = f[i - 1][j] + f[i - 1][j - i] + f[i - 1][j - 2 * i] + …;
f[i][j - i] = f[i - 1][j - i] + f[i - 1][j - 2 * i] + …;
所以,f[i][j] = f[i-1][j] + f[i][j-i]
#include<iostream>
using namespace std;
const int N = 1005, mod = 1e9 + 7;
int f[N][N]; //f[i][j]:从 1~i 中选,体积恰为 j
int main()
{
int n;
cin >> n;
for(int i=1; i<=n; i++) f[i][0] = 1; //从前 i 个选,体积为0,说明一个都不选,只有一种方案
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
f[i][j] = f[i-1][j] % mod;
if(j >= i) f[i][j] = max(f[i][j], f[i-1][j] + f[i][j-i]) % mod;
}
cout << f[n][n];
}
二维到一维空间优化:
#include<iostream>
using namespace std;
const int N = 1005, mod = 1e9 + 7;
int f[N]; //f[i][j]:从 1~i 中选,体积恰为 j
int main()
{
int n;
cin >> n;
f[0] = 1; //从前 i 个选,体积为0,说明一个都不选,只有一种方案
for(int i=1; i<=n; i++)
for(int j=i; j<=n; j++)
f[j] = max(f[j],f[j] + f[j-i]) % mod;
cout << f[n];
}