算法基础之线性dp与区间dp与计数类dp

1、线性dp

1.1、数字三角形

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 1e9;

int n;
//每个点
int a[N][N];
//转态
int f[N][N];

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= i; j ++ )
            scanf("%d", &a[i][j]);
	//处理边界,将所有的f(状态)初始化成负无穷。
	//因为有负边 所以初始化为负无穷。
    for (int i = 0; i <= n; i ++ )
        for (int j = 0; j <= i + 1; j ++ )
            f[i][j] = -INF;

    f[1][1] = a[1][1];
    for (int i = 2; i <= n; i ++ )
        for (int j = 1; j <= i; j ++ )
            f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);

    int res = -INF;
    //求底层的最大值
    for (int i = 1; i <= n; i ++ ) res = max(res, f[n][i]);

    printf("%d\n", res);
    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
转移计算量 本题o(n^2)*o(1) =25万

在这里插入图片描述
在这里插入图片描述

1.2、最长上升子序列

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n;
int a[N], f[N];

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);

    for (int i = 1; i <= n; i ++ )
    {
    	//状态计算时 当j从0到i-1时 且(f[j]>f[i])有
    	//f[i]=max(f[i],f[j]+1) 
    	//f[i]=1 是当j=0时的表达
        f[i] = 1; // 只有a[i]一个数,给每次计算赋初值
        for (int j = 1; j < i; j ++ )
            if (a[j] < a[i])//是否满足上升子序列要求
                f[i] = max(f[i], f[j] + 1);
    }

    int res = 0;
    for (int i = 1; i <= n; i ++ ) res = max(res, f[i]);

    printf("%d\n", res);

    return 0;
}

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

保存并且输出最长序列
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3、最长上升子序列2

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n;
int a[N];
//所有不同上升子序列结尾的最小值
int q[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
	//q中的元素个数
    int len = 0;
    //通过二分枚举出来小于某个数的最大数 
    for (int i = 0; i < n; i ++ )
    {
        int l = 0, r = len;
        while (l < r)
        {
            int mid = l + r + 1 >> 1;
            //check函数 
            if (q[mid] < a[i]) l = mid;
            else r = mid - 1;
        }
        //r表示可以接到哪个长度后边
        len = max(len, r + 1);
        //之前的q[r+1]>=a[i] q[r]<a[i] 保持序列的单调性。重新赋值。
        q[r + 1] = a[i];
    }

    printf("%d\n", len);

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.4、最长公共子序列

在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
    scanf("%d%d", &n, &m);
    //因为使用了i-1和j-1,下标最好从1开始
    scanf("%s%s", a + 1, b + 1);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
        {
            f[i][j] = max(f[i - 1][j], f[i][j - 1]);
            //仅当相等的时候,a[i],b[j]同时出现在子序列中,且为子序列的最后一个元素。
            if (a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
        }
	//在a前n个字母且在b的前m个字母中出现的子序列的最大值
    printf("%d\n", f[n][m]);

    return 0;
}

在这里插入图片描述
在这里插入图片描述
f[i,j]的最大值为这4个状态中的最大值
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.5、最短编辑距离

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
	//涉及到i-1的时候,下标从1开始,以防边界值判断
    scanf("%d%s", &n, a + 1);
    scanf("%d%s", &m, b + 1);
    //对边界值赋值
	//a的前0个字母匹配整个b的时候   需要添加。则b有几个字母就加几次。
    for (int i = 0; i <= m; i ++ ) f[0][i] = i;
    //把a的前i个字母与b的前0个字母匹配 删除 a有多少个就删多少次。
    for (int i = 0; i <= n; i ++ ) f[i][0] = i;

	//下标为0已经计算完毕,从1开始即可
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
        {
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
            else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
        }
        //把a的前n个字母,变成个b的前m个字母
    printf("%d\n", f[n][m]);

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.6、编辑距离

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>
#include <string.h>

using namespace std;

const int N = 15, M = 1010;

int n, m;
//每个字符串 长度只有15
int f[N][N];
//1000个字符串,每个字符串最大长度15
char str[M][N];

//因为传入的时字符串 需要是a[] b[]
int edit_distance(char a[], char b[])
{
//因为a[0]没读入 需要从a[1]开始记录长度
    int la = strlen(a + 1), lb = strlen(b + 1);

    for (int i = 0; i <= lb; i ++ ) f[0][i] = i;
    for (int i = 0; i <= la; i ++ ) f[i][0] = i;

    for (int i = 1; i <= la; i ++ )
        for (int j = 1; j <= lb; j ++ )
        {
            f[i][j] = min(f[i - 1][j] + 1, f[i][j - 1] + 1);
            f[i][j] = min(f[i][j], f[i - 1][j - 1] + (a[i] != b[j]));
        }

    return f[la][lb];
}

int main()
{
    scanf("%d%d", &n, &m);
    //下标从1开始
    for (int i = 0; i < n; i ++ ) scanf("%s", str[i] + 1);

    while (m -- )
    {
        char s[N];
        int limit;
        //下标从1开始
        scanf("%s%d", s + 1, &limit);

        int res = 0;
        for (int i = 0; i < n; i ++ )
        //所有的字符串与s
            if (edit_distance(str[i], s) <= limit)
                res ++ ;

        printf("%d\n", res);
    }

    return 0;
}

2、区间dp

2.1、石子合并

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 310;

int n;
int s[N];
int f[N][N];

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &s[i]);
	//区间和
    for (int i = 1; i <= n; i ++ ) s[i] += s[i - 1];
	//按照长度从小到大,枚举所由区间长度
	//len=1时,合并所需要代价为0.由于时全局变量已经赋值
    for (int len = 2; len <= n; len ++ )
    	//枚举所有的起点  i+len-1最后一个位置
        for (int i = 1; i + len - 1 <= n; i ++ )
        {
        	//左右端点
            int l = i, r = i + len - 1;
            //f[l][r]初值是0,求min 所以要为它赋一个大数
            f[l][r] = 1e8;
            //枚举分界点 k<r 意味着右边至少一个
            for (int k = l; k < r; k ++ )
                f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
        }
	//将第1堆到第n堆合并的最小代价
    printf("%d\n", f[1][n]);
    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、计数类dp

3.1、整数划分

在这里插入图片描述

完全背包解法
状态表示:
f[i][j]表示只从1~i中选,且总和等于j的方案数

状态转移方程:
f[i][j] = f[i - 1][j] + f[i][j - i];

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;

int n;
int f[N];

int main()
{
    cin >> n;
	//一个数都不选。只有f[0]初始化为1
	//f[1],f[2],在一个都不选的时候不可能得到,由全局变量赋值为0即可。
    f[0] = 1;
    for (int i = 1; i <= n; i ++ )
        for (int j = i; j <= n; j ++ )
            f[j] = (f[j] + f[j - i]) % mod;

    cout << f[n] << endl;

    return 0;
}
其他算法
状态表示:
f[i][j]表示总和为i,总个数为j的方案数

状态转移方程:
f[i][j] = f[i - 1][j - 1] + f[i - j][j];

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010, mod = 1e9 + 7;

int n;
int f[N][N];

int main()
{
    cin >> n;
	//初始化
    f[1][1] = 1;
    for (int i = 2; i <= n; i ++ )
    	//j个数字,最多就是i个1
        for (int j = 1; j <= i; j ++ )
            f[i][j] = (f[i - 1][j - 1] + f[i - j][j]) % mod;

    int res = 0;
    for (int i = 1; i <= n; i ++ ) res = (res + f[n][i]) % mod;

    cout << res << endl;

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
完全背包 体积从小到大循环

其他算法
在这里插入图片描述
两种算法对比。最后转态转移方程其实是一致的
在这里插入图片描述

4、压位习题8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值