【leetcode第1题—高效解决Two Sum问题的Python算法】

目录

介绍

解题思路

代码实现

总结


介绍

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target  的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

  • 2 <= nums.length <= 104
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109
  • 只会存在一个有效答案

解题思路

我们可以使用哈希表来优化Two Sum问题的解决过程。具体步骤如下:

  1. 创建一个哈希表,用于存储数组中的数字和它们的索引。

  2. 遍历数组,对于每个数字,计算目标值与当前数字的差值(complement)。

  3. 检查差值是否在哈希表中,如果在,说明找到了两个数字的组合,返回它们的索引。

  4. 如果差值不在哈希表中,将当前数字及其索引添加到哈希表中。

  5. 如果没有找到符合条件的两个数字,返回空列表。

代码实现

def two_sum(nums, target):
    # 创建一个哈希表用于存储数字和它们的索引
    num_dict = {}

    # 遍历数组
    for i, num in enumerate(nums):
        # 计算当前数字与目标值的差值
        complement = target - num

        # 查看差值是否在哈希表中
        if complement in num_dict:
            # 如果在,返回两个数字的索引
            return [num_dict[complement], i]
        
        # 将当前数字及其索引添加到哈希表中
        num_dict[num] = i

    # 如果没有找到符合条件的两个数字,返回空列表
    return []

# 示例用法
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print(result)

总结

这个算法的时间复杂度是O(n),因为只需要一次遍历数组。在处理大规模数据时,相比于传统的双重循环方法,这种使用哈希表的解法更加高效。

通过利用哈希表的快速查找特性,我们可以高效地解决Two Sum问题,提高算法的效率。这种思路不仅适用于Two Sum问题,还可以应用于其他类似的查找问题。在实际编码中,合理选择数据结构和算法,可以有效提升代码的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值