目录
介绍
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
示例 1:
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6 输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6 输出:[0,1]
提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
- 只会存在一个有效答案
解题思路
我们可以使用哈希表来优化Two Sum问题的解决过程。具体步骤如下:
-
创建一个哈希表,用于存储数组中的数字和它们的索引。
-
遍历数组,对于每个数字,计算目标值与当前数字的差值(complement)。
-
检查差值是否在哈希表中,如果在,说明找到了两个数字的组合,返回它们的索引。
-
如果差值不在哈希表中,将当前数字及其索引添加到哈希表中。
-
如果没有找到符合条件的两个数字,返回空列表。
代码实现
def two_sum(nums, target):
# 创建一个哈希表用于存储数字和它们的索引
num_dict = {}
# 遍历数组
for i, num in enumerate(nums):
# 计算当前数字与目标值的差值
complement = target - num
# 查看差值是否在哈希表中
if complement in num_dict:
# 如果在,返回两个数字的索引
return [num_dict[complement], i]
# 将当前数字及其索引添加到哈希表中
num_dict[num] = i
# 如果没有找到符合条件的两个数字,返回空列表
return []
# 示例用法
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print(result)
总结
这个算法的时间复杂度是O(n),因为只需要一次遍历数组。在处理大规模数据时,相比于传统的双重循环方法,这种使用哈希表的解法更加高效。
通过利用哈希表的快速查找特性,我们可以高效地解决Two Sum问题,提高算法的效率。这种思路不仅适用于Two Sum问题,还可以应用于其他类似的查找问题。在实际编码中,合理选择数据结构和算法,可以有效提升代码的性能。