题目:
所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 8^3 -7^3=169=13 ^2 ,而 13=3^2 + 2^2 ,于是 8 和 3 就是一对缘分数。给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution。
题目还是很简单的,不过做的时候最后一个测试点出现了问题,原因在于题目上a与b是不同的数,排除了1 1的结果。`
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
int main(){
int low, high;
int lc, ph;
int flag=0;
scanf("%d %d", &low, &high);
for(int i=low; i<=high; i++){
lc = i*i*i-(i-1)*(i-1)*(i-1);
for(int j=2; j<=sqrt(sqrt(lc)); j++){
ph = j*j + (j-1)*(j-1);
if(ph*ph == lc) {
printf("%d %d\n", i, j);
flag=1;
}
}
}
if(flag==0) printf("No Solution");
}