1. 几何变换的定义
几何变换改变了图像中像素的空间排列。这些变换通常被叫橡皮膜变换,他们类似于在一块橡皮膜上打印图像,按某种规则来拉伸或缩小橡皮膜。
数字图像的几何变换由两种基本运算组成:
(1)坐标的空间变换;
(2)灰度内插,即为空间变换后的像素赋值(灰度值)
坐标变换可表示为:
2. 图像的仿射变换
以线性变换中的仿射变换为例,通过下图的齐次变换矩阵,我们可以表示仿射变换的四种形式。
仿射变换包括:缩放、平移、旋转和剪切变换。
对于该矩阵的使用,通常有两种方法:
(1)正向映射:将输入图像的任意像素坐标(x,y)映射到输出图像中的对应位置(u,v),是从 整数集(输入像素的坐标)到实数集(输出位置的坐标) 的映射。
常使用前向映射估计输出图像外接矩形大小
(2)反向映射:将输出图像中空间均匀分布的像素坐标(u,v)(整数坐标)映射到输入图像中的相应位置(x,y)(浮点坐标),该映射可确保输出图像任何像素在输入图像都有对应位置坐标。
常使用逆向映射产生几何变换后的输出图像
3. 灰度插值
常见的三种灰度插值方法:
- 近邻法:在输入图像中距离浮点位置最近的整数坐标像素值为输出图像的像素值。
- 双线性内插法:与输入图像中浮点位置最近的2*2邻域整数坐标像素值线性加权
- 双三次卷积法:与输入图像中浮点位置最近的4*4邻域整数坐标像素值线性加权