矩阵快速幂优化dp 从朴素dp到快速幂

前言:这是一场周赛的第四题,第二题也是类似的题目,但是这题不可以暴力,所以我们得用快速幂来优化,因为这题符合我们说的有递推公式,且递推的数量特别大,符合快速幂的使用条件


题目地址

在这里插入图片描述

Mo = int(1e9)+7

def mul(a,b):
    n = len(a)
    m = len(b[0])
    kk = len(a[0])
    tmp = [[0]*m for _ in range(n)]

    for i in range(n):
        for j in range(m):
            for k in range(kk):
                tmp[i][j] += a[i][k]*b[k][j]
                tmp[i][j] %= Mo
    return tmp
# def mul(a: List[List[int]], b: List[List[int]]) -> List[List[int]]:
#     return [[sum(x * y for x, y in zip(row, col)) % Mo for col in zip(*b)]
#             for row in a]


def pow_mul(a,n,f):
    res = f
    while n:
        if n&1:
            res = mul(a,res)
        a = mul(a,a)
        n >>= 1
    return res

class Solution:
    def lengthAfterTransformations(self, s: str, t: int, nums: List[int]) -> int:
        size = 26
        f = [[1] for _ in range(size)]
        m = [[0]*size for _ in range(size)]

        for i,c in enumerate(nums):
            for j in range(i+1,i+c+1):
                m[i][j%size] = 1
        mt = pow_mul(m,t,f)
        ans = 0
        ans = 0
        for ch, cnt in Counter(s).items():
            ans += mt[ord(ch) - ord('a')][0] * cnt

        return ans%Mo
        

注意在矩阵运算的时候取模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wniuniu_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值