用Python画出平滑的曲线(插值法)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wnma3mz/article/details/78105760

实现所需的库

numpy、scipy、matplotlib

实现所需的方法

插值

  • nearest:最邻近插值法
  • zero:阶梯插值
  • slinear:线性插值
  • quadratic、cubic:2、3阶B样条曲线插值

拟合和插值的区别

简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。

拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。

代码实现

# -*- coding: utf-8 -*-

# 调用模块
# 调用数组模块
import numpy as np
# 实现插值的模块
from scipy import interpolate
# 画图的模块
import matplotlib.pyplot as plt
# 生成随机数的模块
import random

# random.randint(0, 10) 生成0-10范围内的一个整型数
# y是一个数组里面有10个随机数,表示y轴的值
y = np.array([random.randint(0, 10) for _ in range(10)])
# x是一个数组,表示x轴的值
x = np.array([num for num in range(10)])

# 插值法之后的x轴值,表示从0到9间距为0.5的18个数
xnew = np.arange(0, 9, 0.5)

"""
kind方法:
nearest、zero、slinear、quadratic、cubic
实现函数func
"""
func = interpolate.interp1d(x, y, kind='cubic')
# 利用xnew和func函数生成ynew,xnew的数量等于ynew数量
ynew = func(xnew)

# 画图部分
# 原图
plt.plot(x, y, 'ro-')
# 拟合之后的平滑曲线图
plt.plot(xnew, ynew)
plt.show()

注意事项

  • x, y为原来的数据(少量)
  • xnew为一个数组,条件:xxnew
    • 如:x的最小值为-2.931,最大值为10.312;则xnew的左边界要小于-2.931,右边界要大于10.312。当然也最好注意一下间距,最好小于x中的精度
  • func为函数,里面的参数x、y、kind,x,y就是原数据的x,y,kind为需要指定的方法
  • ynew需要通过xnew数组和func函数来生成
  • 理论上xnew数组内的值越多,生成的曲线越平滑

参考博客

展开阅读全文

没有更多推荐了,返回首页