实现所需的库
numpy、scipy、matplotlib
实现所需的方法
插值
- nearest:最邻近插值法
- zero:阶梯插值
- slinear:线性插值
- quadratic、cubic:2、3阶B样条曲线插值
拟合和插值的区别
简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。
拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。
代码实现
# -*- coding: utf-8 -*-
# 调用模块
# 调用数组模块
import numpy as np
# 实现插值的模块
from scipy import interpolate
# 画图的模块
import matplotlib.pyplot as plt
# 生成

本文介绍了使用Python进行平滑曲线绘制的方法,重点讲解了插值法,包括最邻近插值、线性插值以及B样条曲线插值。同时,讨论了插值与拟合的区别,并提供了代码实现示例,强调了在应用插值法时需要注意的数据范围和精度问题。
最低0.47元/天 解锁文章
1707

被折叠的 条评论
为什么被折叠?



