软件工程-用例图

用例图是系统分析阶段的重要工具,它描绘了系统、参与者及它们之间的交互。本文介绍了用例图的基本元素,包括参与者、用例、关联关系、包含关系、扩展关系和泛化关系,并提供了详细的箭头指向说明。此外,还展示了用例图在系统功能建模中的应用,帮助开发团队理解和沟通系统需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用例图简介:

用例图(英语:use case diagram)是用户与系统交互的最简表示形式,展现了用户和与他相关的用例之间的关系。通过用例图,人们可以获知系统不同种类的用户和用例。用例图也经常和其他图表配合使用。

用例图主要用来描述角色以及角色与用例之间的连接关系。说明的是谁要使用系统,以及他们使用该系统可以做些什么。一个用例图包含了多个模型元素,如系统、参与者和用例,并且显示这些元素之间的各种关系,如泛化、关联和依赖。它展示了一个外部用户能够观察到的系统功能模型图。

【用途】:帮助开发团队以一种可视化的方式理解系统的功能需求。

一、用例图所包含的的元素

  • 参与者(Actor)
  • 用例(Use Case)
  • 关联关系(Association)
  • 包含关系(Include)
  • 扩展关系(Extend)
  • 泛化关系(Generalization)

在这里插入图片描述

1.参与者(Actor)——与应用程序或系统进行交互的用户、组织或外部系统。用一个小人表示。
在这里插入图片描述

2.用例(Use Case)——用例就是外部可见的系统功能,对系统提供的服务进行描述。用椭圆表示。
在这里插入图片描述

3.子系统(Subsystem)——用来展示系统的一部分功能,这部分功能联系紧密。
在这里插入图片描述

4.关联关系(Association)——表示参与者与用例之间的通信,任何一方都可发送或接受消息。
【箭头指向】:无箭头,将参与者与用例相连接,指向消息接收方。
在这里插入图片描述

5.包含关系(Include)—— 包含关系用来把一个较复杂用例所表示的功能分解成较小的步骤。
【箭头指向】:指向分解出来的功能用例。
在这里插入图片描述
6.扩展关系(Extend)——扩展关系是指用例功能的延伸,相当于为基础用例提供一个附加功能。
【箭头指向】:指向基础用例。
在这里插入图片描述

7.泛化关系(Generalization)——就是通常理解的继承关系,子用例和父用例相似,但表现出更特别的行为;子用例将继承父用例的所有结构、行为和关系。
【箭头指向】:指向父用例。
在这里插入图片描述
8.依赖关系(Dependency)——以上4种关系,是UML定义的标准关系。但VS2010的用例模型图中,添加了依赖关系,用带箭头的虚线表示,表示源用例依赖于目标用例。
  【箭头指向】:指向被依赖项
在这里插入图片描述

二、几个用例图示例

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

SLAM精度评估中的EVO是指使用EVO工具来评估SLAM系统的轨迹误差。EVO是一个开源的工具,用于评估SLAM系统的性能。它提供了一系列命令和功能,可以计算和可视化SLAM系统的轨迹误差。 在EVO中,有几个常用的命令可以用来评估SLAM系统的轨迹误差。其中,evo_traj命令用于评估轨迹误差,可以使用手写的ATE(绝对位姿误差)和RPE(相对位姿误差)来比较SLAM系统的性能。\[1\] 相对位姿误差主要用于比较运动(姿态增量),而不是进行绝对位姿的比较。相对位姿误差可以给出局部精度,例如SLAM系统每米的平移或旋转漂移量。可以使用evo_rpe命令来计算相对位姿误差,并通过设置参数来进行可视化和保存结果。\[2\] 另外,evo_ape命令可以用于计算ATE(绝对位姿误差),并提供了可视化和保存结果的功能。可以使用该命令来评估SLAM系统在KITTI数据集上的性能。\[3\] 总之,EVO是一个用于评估SLAM系统性能的工具,可以通过计算和可视化轨迹误差来评估SLAM系统的精度。可以使用evo_traj、evo_rpe和evo_ape等命令来进行评估和分析。 #### 引用[.reference_title] - *1* *2* [SLAM精度测评——EVO进阶](https://blog.csdn.net/Darlingqiang/article/details/123534388)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [ros中SLAM的EVO、APE测评——SLAM精度测评(一)](https://blog.csdn.net/Yangy_Jiaojiao/article/details/124419966)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值