1.3 向量方程(线性代数及其应用-第5版-系列笔记)

内容概述

本节首先以 R 2 \mathbb{R}^2 R2 R 3 \mathbb{R}^3 R3空间为例,引入了向量的概念、向量的几何表示,并介绍了向量的一些基本运算和性质,例如向量的加法和标量乘法、交换律、结合律等。接着引入了线性组合的概念,并将线性组合线性方程组结合了起来。

R 2 \mathbb{R}^2 R2中的向量

仅含一列的矩阵称为列向量,或简称向量。举例如下:
u = [ 1 2 ] \boldsymbol u = \begin{bmatrix}1 \\2 \end{bmatrix} u=[12] v = [ 0.2 0.3 ] \boldsymbol v = \begin{bmatrix}0.2 \\0.3 \end{bmatrix} v=[0.20.3]
所有两个元素的向量的集记为 R 2 \mathbb{R}^2 R2 R \mathbb{R} R表示向量中的元素是实数,而指数2表示每个向量包含两个元素。
R 2 \mathbb{R}^2 R2中两个向量相等当且仅当其对应元素相等,因为 R 2 \mathbb{R}^2 R2中的向量是实数的有序对

给定 R 2 \mathbb{R}^2 R2中两个向量 u \boldsymbol u u v \boldsymbol v v,它们的和 u + v \boldsymbol u+\boldsymbol v u+v是把 u \boldsymbol u u v \boldsymbol v v对应元素相加所得的向量。例如, u = [ 1 2 ] \boldsymbol u = \begin{bmatrix}1\\ 2 \end{bmatrix} u=[12] v = [ 2 5 ] \boldsymbol v = \begin{bmatrix}2\\ 5 \end{bmatrix} v=[25]两个向量的和是 w = [ 3 7 ] \boldsymbol w = \begin{bmatrix}3\\ 7 \end{bmatrix} w=[37]

给定向量 u \boldsymbol u u和实数 c c c u \boldsymbol u u c c c的标量乘法是把 u \boldsymbol u u的每个元素乘以 c c c,所得向量记为 c u c \boldsymbol u cu
例如,

u = [ 3 − 1 ] , c = 5 \boldsymbol u=\begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad c = 5 u=[31],c=5

c u = 5 [ 3 − 1 ] = [ 15 − 5 ] c \boldsymbol u = 5\begin{bmatrix} 3 \\ -1 \end{bmatrix}=\begin{bmatrix} 15 \\ -5 \end{bmatrix} cu=5[31]=[155]

R 2 \mathbb{R}^2 R2的几何表示

因为平面上每个点由实数的有序对确定,所以可把集合点 ( a , b ) (a, b) (a,b)与列向量 [ a b ] \begin{bmatrix} \boldsymbol a \\ \boldsymbol b \end{bmatrix} [ab]等同。因此,可把 R 2 \mathbb{R}^2 R2看作平面上所有点的集合。
R 2 \mathbb{R}^2 R2中向量 u \boldsymbol u u v \boldsymbol v v用平面上的点表示,则 u + v \boldsymbol u + \boldsymbol v u+v对应于以 u \boldsymbol u u, 0 \boldsymbol 0 0 v \boldsymbol v v为三个顶点的平行四边形的第4个顶点。

平行四边形法则.png

R 3 \mathbb{R}^3 R3中的向量

R 3 \mathbb{R}^3 R3中的向量是 3 × 1 3 \times 1 3×1列矩阵,有3个元素,它们表示三维坐标空间中的点,或起点为原点的箭头。
R3中的向量.jpg

R n \mathbb{R}^n Rn中的向量

n n n是正整数,则 R n \mathbb{R}^n Rn表示所有 n n n个实数数列(或有序 n n n元组)的集合,通常写成 n × 1 n \times1 n×1列矩阵的形式,如:
u = [ u 1 u 2 . . . u n ] \boldsymbol u = \begin{bmatrix} u_1 \\ u_2 \\ ... \\ u_n \end{bmatrix} u=u1u2...un
所有元素都是零的向量称为零向量,用 0 \boldsymbol 0 0表示( 0 \boldsymbol 0 0中元素的个数可由上下文确定。)
下列是 R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值