1.2 行化简和阶梯形矩阵(线性代数及其应用-第5版-系列笔记)

内容概述

本节首先讲解了矩阵变换的两种形式:阶梯形简化阶梯形,并讲述了这两种变换之间的关系(最重要的关系是二者的主元位置和主元列是相同的)。之所以引入这两种变换,是为了给解线性方程组和研究线性方程组解的性质提供方便。接下来,讲解了利用简化阶梯形求解线性方程组解的方法,最后讨论了利用阶梯形矩阵判断方程组解的存在性唯一性的方法,并得出了解线性方程组的一般步骤

术语约定

非零行:
矩阵中至少包含一个非零元素的行
非零列:
矩阵中至少包含一个非零元素的列
先导元素:
非零行中最左边的非零元素

阶梯形矩阵的定义

一个矩阵称为阶梯形(或行阶梯形),若它有以下三个性质:

  1. 每一非零行都在每一零行之上
  2. 某一行的先导元素所在的列位于前一行先导元素的右边
  3. 某一先导元素所在列下方元素都是零

若一个阶梯形矩阵还满足以下性质,则称它为简化阶梯形(或简化行阶梯形):

  1. 每一非零行的先导元素是1
  2. 每一先导元素1是该元素所在列的唯一非零元素

下面是阶梯形矩阵的例子,先导元素用 △ \triangle 表示, ∗ * 表示任意元素。
[ △ ∗ ∗ ∗ 0 △ ∗ ∗ 0 0 0 0 0 0 0 0 ] \begin{bmatrix} \triangle & * & * & * \\ 0 & \triangle & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} 000000000

[ 0 △ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 △ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 △ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 △ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 △ ∗ ] \begin{bmatrix} 0 & \triangle & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \triangle & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \triangle & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \triangle & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \triangle & * \end{bmatrix} 000000000000000000000

下面是一个简化阶梯形矩阵的例子:
[ 1 0 ∗ ∗ 0 1 ∗ ∗ 0 0 0 0 0 0 0 0 ] \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} 1000010000

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值