1.7 线性无关(第1章 线性代数中的线性方程组)

内容概述

本节首先从向量的代数关系出发,引入了向量组的线性无关线性相关两个重要的概念;接着,以递进的方式,首先研究了一个或两个向量之间的关系,引入一些判断向量关系的方法,例如通过观察法来判定两个向量之间的关系,并从几何的角度去理解这种关系,接着研究了两个或多个向量彼此之间的关系,并引入了一些新的定理,用来判定向量集合的相关关系,例如从线性组合的角度、方程组的行列数量等等。本节的重点是要从代数的、几何的不同角度去理解和品味线性无关线性相关这两个概念,为将来的学习打下基础。

线性无关

定义:

R n \mathbb R^n Rn中一组向量 { v 1 , ⋯   , v p } \{\boldsymbol v_1, \cdots, \boldsymbol v_p\} { v1,,vp}称为线性无关的,若向量方程
x 1 v 1 + x 2 v 2 + ⋯ + x p v p = 0 x_1\boldsymbol v_1 + x_2\boldsymbol v_2 + \cdots + x_p\boldsymbol v_p = \boldsymbol 0 x1v1+x2v2++xpvp=0
仅有平凡解。
向量组(集) { v 1 , ⋯   , v p } \{\boldsymbol v_1, \cdots, \boldsymbol v_p\} { v1,,vp}称为线性相关的,若存在不全为零的权 c 1 , ⋯   , c p c_1,\cdots,c_p c1,,cp,使得
c 1 v 1 + c 2 v 2 + ⋯ + c p v p = 0 c_1\boldsymbol v_1 + c_2\boldsymbol v_2 + \cdots + c_p\boldsymbol v_p = \boldsymbol 0 c1v1+c2v2++cpvp=0
并且这个方程称为向量 v 1 , ⋯   , v p \boldsymbol v_1, \cdots, \boldsymbol v_p v1,,vp之间的线性相关关系,其中权不全为零。一组向量线性相关当且仅当它不是线性无关的。也可以说向量组 { v 1 , ⋯   , v p } \{\boldsymbol v_1, \cdots, \boldsymbol v_p\} { v1,,vp}是线性相关组。

注意:

线性无关、线性相关的概念,本质上是在研究不同向量之间的关系,向量方程只是其中一种描述形式。

例:

v 1 = [ 1 2 3 ] v_1 = \begin{bmatrix}1\\ 2 \\ 3\end{bmatrix} v1=123, v 2 = [ 4 5 6 ] v_2 = \begin{bmatrix}4\\ 5 \\ 6\end{bmatrix} v2=456, v 3 = [ 2 1 0 ] v_3 = \begin{bmatrix}2\\ 1 \\ 0\end{bmatrix} v3=210,
a. 确定向量组 { v 1 , v 2 , v 3 } \{\boldsymbol v_1, \boldsymbol v_2,\boldsymbol v_3\} { v1,v2,v3}是否线性相关
b. 可能的话,求出 v 1 \boldsymbol v_1 v1 v 2 \boldsymbol v_2 v2 v 3 \boldsymbol v_3 v3的一个线性相关关系
解:
a. 把相应的增广矩阵行变换为阶梯形矩阵:
[ 1 4 2 0 0 − 3 − 3 0 0 0 0 0 ] \begin{bmatrix}1 & 4 & 2 & 0\\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0\end{bmatrix} 100430230000
显然, x 1 x_1 x1 x 2 x_2 x2为基本变量, x 3 x_3 x3为自由变量, x 3 x_3 x3的每个非零值确定一组非平凡解,因此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值