1. 定义
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。
并:即union,合并两个集合;
查:即find,判断两个集合是否在同一集合;
集:即set,集合。
并查集用一个数组father[n]实现,father[i]表示元素i的父亲结点。
2. 基本操作
最初,每个元素都是一个独立的集合,所以把每个元素的父结点都初始化为元素本身。
for(int i=1;i<=n;i++)
father[i] = i;
2.2 查找
查找给定结点的根结点。一般使用递归或递推的方式查找根结点,即反复寻找结点的父结点,直到找到father[i]==i为止。
//使用递归方式查找根结点
int findFather(int i)
{
if(father[i] == i)
return i;
else
return findFather(father[i]);
}
//使用递推方式查找根结点
int findFather(int i)
{
while(father[i] != i)
i = father[i];
return i;
}
当元素数量很多时,使用以上查找方式效率较低,为了优化代码,可以把当前查询结点的路径上的所有结点的父亲都指向根结点。
//使用递归方式查找根结点
int findFather(int i)
{
if(i == father[i])
return i;
else
{
int f = findFather(father[i]);
father[i] = f;
return f;
}
}
//使用递推方式查找根结点
int findFather(int i)
{
int x = i;
while(i != father[i])
i = father[i];
while(x != father[x])
{
int y = x;
x = father[x];
father[y] = i;
}
return i;
}
2.3 合并
判断两个元素是否属于同一集合(即根结点是否相同),只有两个元素不属于同一个集合时才需要合并,合并过程就是将其中一个集合的根结点改为另一个集合的根结点(只改根结点)。
void Union(int a,int b)
{
int faA=findFather(a);
int faB=findFather(b);
if(faA!=faB)
father[faA]=faB;
}
3、路径压缩
①、递推实现
int findFather(int x)
{
int a=x;
while(x!=father[x])
x=father[x];
while(a!=father[a]) //从底向上,再走一遍!
{
int z=a; //z暂时保存a的值 ps:可以想象为两个指针
a=father[a]; //a向上走一步
father[z]=x;
}
}
②、递归实现
int findFather(int v)
{
if(v==father[v])
return v;
else
{
int F=findFather(father[v]);
father[v]=F;
return F;
}
}
总代码:
#include<bits/stdc++.h>
using namespace std;
template<class T>
struct DisjointSet{
int *parent;
T *data;
map<T,int> m;
int capacity;
int size;
DisjointSet(int max=1000){
capacity=max;
size=0;
parent=new int[max+1];
data=new T[max+1];
}
~DisjointSet(){
delete [] parent;
delete [] data;
}
bool insert(T x){
if(size==capacity) return false;
size++;
data[size]=x;
parent[size]=-1;
m[x]=size;
return true;
}
int getIndex(T x){
for(int i=1;i<=size;i++)
if(data[i]==x)
return i;
return -1;
}
int find(T x){
typename map<T,int>::iterator it;
it=m.find(x);
if(it==m.end()) return -1;
int i,rt;
i=rt=it->second;
while(parent[rt]>0)
rt=parent[rt];
int tmp;
for(;i!=rt;i=tmp){
tmp=parent[i];
parent[i]=rt;
}
return rt;
}
void unionSet(T x,T y){
int rx,ry;
rx=find(x);
ry=find(y);
if(rx==-1||ry==-1) return ;
if(rx==ry) return ;
if(parent[rx]<parent[ry]){
parent[rx]+=parent[ry];
parent[ry]=rx;
}
else{
parent[ry]+=parent[rx];
parent[rx]=ry;
}
}
void print(){
cout<<"当前并查集:"<<endl;
for(int i=1;i<=size;i++)
cout<<i<<"\t";
cout<<endl;
for(int i=1;i<=size;i++)
cout<<parent[i]<<"\t";
cout<<endl;
for(int i=1;i<=size;i++)
cout<<data[i]<<"\t";
cout<<endl;
}
};
int main(){
DisjointSet<string> s;
int n,m;
cout<<"请输入学生个数n,和合并对数m:";
cin>>n>>m;
for(int i=0;i<m;i++){
string a,b;
cin>>a>>b;
if(i>0){
if(s.find(a)==-1)
s.insert(a);
if(s.find(b)==-1)
s.insert(b);
}
else{
s.insert(a);
s.insert(b);
}
s.unionSet(a,b);
}
s.print();
int sum=0,min=0x9999999,minx;
for(int i=1;i<=s.size;i++){
if(s.parent[i]<0){
sum++;
if(min>s.parent[i])
min=s.parent[i],minx=i;
}
}
cout<<"一共有"<<sum<<"个学校的学生."<<endl;
cout<<"人数最多的学校的学生:";
for(int i=1;i<=s.size;i++)
if(s.parent[i]==minx||s.parent[i]==min)
cout<<s.data[i]<<",";
return 0;
}
以上并查集代码是根据此题实现:
实例:推断学生所属学校
某个比赛现场有来自不同学校的N名学生,给出M对“两人同属一所学校”的关系,请推断学校数量,并给出人数最多的学校的学生名单。
输入格式:
先输入一个在[2,1000]范围的整数N,然后是N个用空格间隔姓名。接下来一行是正整数M,然后是M行,每行两个人名,表示同属一所学校。
输出格式:
先输出学校的数量,在下一行输出人数最多的学校学生名单。
样例:
n=8;
OK,今天的并查集就讲到这里了,大家再见!