【亲测】成功安装flash-attn

微信公众号:leetcode_algos_life,代码随想随记
小红书:412408155
CSDN:https://blog.csdn.net/woai8339?type=blog ,代码随想随记
GitHub: https://github.com/riverind
抖音【暂未开始,计划开始】:tian72530,代码随想随记
知乎【暂未开始,计划开始】:happy001

背景

安装flash-attn用来加速大模型训练

问题

直接pip install flash-attn老是失败

解决方案

pip install flash-attn -i https://pypi.tuna.tsinghua.edu.cn/simple --no-build-isolation

在这里插入图片描述

### 安装 `flash-attn` 库 为了成功安装 `flash-attn` 库,环境配置至关重要。如果环境中未找到 `nvcc` 编译器,则会收到警告信息[^1]: ```bash UserWarning: flash_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc. ``` 这表明当前使用的 Python 环境缺少 NVIDIA CUDA 编译工具链 (nvcc),而这些对于编译和运行 GPU 加速版本的 `flash-attn` 是必需的。 #### 解决方案一:确保有可用的 `nvcc` 确认本地已正确安装并配置了 CUDA 工具包,并且可以通过命令行访问 `nvcc`。可以尝试执行如下命令来验证是否能够调用到 `nvcc`: ```bash nvcc --version ``` 若上述命令返回有关 CUDA 版本的信息,则说明环境设置无误;反之则需重新安装或调整路径变量以使系统识别 `nvcc`。 #### 解决方案二:使用支持 `nvcc` 的 Docker 镜像 考虑到并非所有人都能在自己的机器上轻松部署完整的 CUDA 开发环境,在这种情况下推荐采用官方提供的 PyTorch Docker 镜像中的开发版 (`pytorch/deep`) 来构建容器化的工作空间。这类镜像预装了必要的依赖项,包括但不限于 `nvcc` 和其他用于加速计算的核心组件。 创建基于此镜像的新容器实例时,请参照以下指令操作: ```dockerfile FROM pytorch/pytorch:latest-devel-cuda11.3.1-cudnn8-runtime RUN pip install git+https://github.com/HazyResearch/flash-attention.git@v1.0.3.post0#egg=flash-attn ``` 这段脚本定义了一个新的 Docker 映像文件(Dockerfile),它继承自最新的带有 CUDA 支持的 PyTorch 发展映像,并通过 Git URL 指定的方式获取特定标签下的 Flash Attention 项目源码来进行安装。 完成以上准备工作之后,便可以在具备适当硬件条件和支持软件框架的前提下顺利加载并利用 `flash-attn` 提供的功能特性了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值