安装YOLOv12中所需的Flash Attention(flash-attn),保姆级配置教程,将YOLOv11环境变成YOLOv12

前言

YOLOv12的模型文件中主要使用了A2C2f模块,这需要安装flash-attn包。本文总结了安装过程中可能遇到的问题和解决办法,并介绍如何根据自己的环境正确安装flash-attn包,并顺利训练YOLOv12。

一、未安装或未安装成功可能发生的报错和解决办法

1.1 RuntimeError: FlashAttention only supports Ampere GPUs or newer.

安装完成后报错:

报错原因: 当前显卡版本不支持,我用的V100,报这个错

解决办法: 使用其它显卡,例如RTX X090H100A100

1.2 False, “import FlashAttention error! Please install FlashAttention first.”

未安装报错:

报错原因: 未安装flash-attn

解决办法: 成功安装后便不会报错,参考第二节的安装步骤。

1.3 TypeError: argument of type ‘PosixPath’ is not iterable

安装完成后报错:

报错原因: 运行时候报错,参考:https://github.com/sunsmarterjie/yolov12/issues/2

解决办法:ultralytics/utils/downloads.py中的attempt_download_asset函数下,找到if 'v12' in file:,并修改成如下样式:

if 'v12' in str(file):  # 此处
   repo = "sunsmarterjie/yolov12"
   release = "v1.0"

二、flash-attn安装步骤

2.1 查看本地环境

安装flash-attn需根据自己的Python版本CUDA版本还有torch版本,首先查看这些版本信息。

查看Python版本:

python --version

在这里插入图片描述
查看CUDA版本:

nvcc -V

在这里插入图片描述
查看torch版本:

pip show torch

在这里插入图片描述

我的Python版本是3.12.3、CUDA版本是12.1、torch版本是2.2.0

2.2 下载并安装

下载flash-attn
Linux下载链接:https://github.com/Dao-AILab/flash-attention/releases
Windows下载链接:https://github.com/bdashore3/flash-attention/releases

根据自己的PythonCUDAtorch的版本信息,选择对应的flash-attn,注意选择abiFALSE版本。
我的环境需要下载这个:

在这里插入图片描述

下载完成后,放在YOLOv12项目包的根目录,并在终端中安装flash-attn包,安装命令(替换成自己的包名称即可):

pip install flash_attn-2.7.4.post1+cu12torch2.2cxx11abiFALSE-cp312-cp312-linux_x86_64.whl

在这里插入图片描述

安装完成后就配置完成了,可以进行训练了,YOLOv11中也可以按此配置,修改成YOLOv12。

2.3 YOLOv12模型结构

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
  l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
  x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs

# YOLO12n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv,  [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 5-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 7-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 8

# YOLO12n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 11

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 14

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 17

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)

  - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)

三、成功运行结果

                   from  n    params  module                                       arguments                     
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  1    111872  ultralytics.nn.modules.block.C3k2            [128, 256, 1, True, 0.25]     
  3                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
  4                  -1  1    444928  ultralytics.nn.modules.block.C3k2            [256, 512, 1, True, 0.25]     
  5                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  6                  -1  2   2690560  ultralytics.nn.modules.block.A2C2f           [512, 512, 2, True, 4]        
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  8                  -1  2   2690560  ultralytics.nn.modules.block.A2C2f           [512, 512, 2, True, 1]        
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  1   1248768  ultralytics.nn.modules.block.A2C2f           [1024, 512, 1, False, -1]     
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 13             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 14                  -1  1    378624  ultralytics.nn.modules.block.A2C2f           [1024, 256, 1, False, -1]     
 15                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 16            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  1   1183232  ultralytics.nn.modules.block.A2C2f           [768, 512, 1, False, -1]      
 18                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 19             [-1, 8]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 20                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 21        [14, 17, 20]  1   1411795  ultralytics.nn.modules.head.Detect           [1, [256, 512, 512]]          
YOLOv12m summary: 501 layers, 20,140,307 parameters, 20,140,291 gradients, 67.7 GFLOPs

专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### YOLOv12 Flash Attention Implementation Details #### Overview of YOLOv12 Architecture YOLOv12 represents an advanced iteration within the YOLO family designed specifically for object detection tasks. The introduction of flash attention into this framework aims at enhancing model efficiency while maintaining high accuracy levels. Flash attention modifies traditional self-attention mechanisms by optimizing memory usage and computational speed through specific techniques such as parallel processing and efficient matrix operations[^4]. This adaptation allows real-time applications requiring rapid inference times without compromising on performance metrics like precision or recall rates. Incorporating these improvements, YOLOv12 leverages multi-scale feature extraction methods similar to those described previously where ResNet architectures play a crucial role in capturing hierarchical patterns from input images effectively [^3]. #### Technical Specifications and Resources For developers interested in exploring how exactly flash attention integrates with YOLOv12's pipeline, several key points can be highlighted: - **Optimized Memory Usage**: By employing specialized algorithms during training phases, less GPU RAM is consumed compared to standard implementations. - **Faster Computation Speeds**: Utilizing optimized linear algebra routines ensures faster forward/backward passes when handling large batches of data. A practical example demonstrating part of the integration process might look something along these lines: ```python import torch.nn.functional as F from yolov12.models import BackboneWithFlashAttention def apply_flash_attention(input_tensor): # Assuming `input_tensor` contains image features extracted via backbone network attended_features = BackboneWithFlashAttention()(input_tensor) return attended_features ``` This code snippet illustrates applying flash attention after extracting base-level features using a pre-trained backbone network adapted for use within YOLOv12 context.
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值