Pytorch中CNN图像处理学习代码加超详细注释

Pytorch中CNN图像处理学习代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# torchvision是独立于pytorch的关于图像操作的一些方便工具库。
# torchvision的详细介绍在:https://pypi.org/project/torchvision/0.1.8/
# torchvision主要包括一下几个包:
# vision.datasets : 几个常用视觉数据集,可以下载和加载
# vision.models : 流行的模型,例如 AlexNet, VGG, and ResNet 以及 与训练好的参数。
# vision.transforms : 常用的图像操作,例如:随机切割,旋转等。
# vision.utils : 用于把形似 (3 x H x W) 的张量保存到硬盘中,给一个mini-batch的图像可以产生一个图像格网。

print("PyTorch Version: ",torch.__version__)

首先我们定义一个基于ConvNet的简单神经网络

1、加载数据(顺序调整一下)

torch.manual_seed(53113)  #cpu随机种子

#没gpu下面可以忽略
use_cuda = torch.cuda.is_available()  
device = torch.device("cuda" if use_cuda else "cpu")  
batch_size = test_batch_size = 32  
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}


#torch.utils.data.DataLoader在训练模型时使用到此函数,用来把训练数据分成多个batch,
#此函数每次抛出一个batch数据,直至把所有的数据都抛出,也就是个数据迭代器。
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./mnist_data', 
                   train=True, #如果true,从training.pt创建数据集
                   download=True, #如果ture,从网上自动下载
                   
#transform 接受一个图像返回变换后的图像的函数,相当于图像先预处理下
#常用的操作如 ToTensor, RandomCrop,Normalize等. 
#他们可以通过transforms.Compose被组合在一起 
                   transform=transforms.Compose([
                       
                       transforms.ToTensor(), 
#.ToTensor()将shape为(H, W, C)的nump.ndarray或img转为shape为(C, H, W)的tensor,
#其将每一个数值归一化到[0,1],其归一化方法比较简单,直接除以255即可。
                       
                       transforms.Normalize((0.1307,), (0.3081,)) # 所有图片像素均值和方差
#.Normalize作用就是.ToTensor将输入归一化到(0,1)后,再使用公式”(x-mean)/std”,将每个元素分布到(-1,1)  
                   ])), # 第一个参数dataset:数据集
    batch_size=batch_size, 
    shuffle=True,  #随机打乱数据
    **kwargs)##kwargs是上面gpu的设置
  


test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./mnist_data', 
                   train=False, #如果False,从test.pt创建数据集
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=test_batch_size, 
    shuffle=True, 
    **kwargs)


train_loader.dataset[0][0].shape

2、定义CNN模型

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1) 
        #torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1)
        #in_channels:输入图像通道数,手写数字图像为1,彩色图像为3
        #out_channels:输出通道数,这个等于卷积核的数量
        #kernel_size:卷积核大小
        #stride:步长
         
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        #上个卷积网络的out_channels,就是下一个网络的in_channels,所以这里是20
        #out_channels:卷积核数量50
        
        
        self.fc1 = nn.Linear(4*4*50, 500)
        #全连接层torch.nn.Linear(in_features, out_features)
        #in_features:输入特征维度,4*4*50是自己算出来的,跟输入图像维度有关
        #out_features;输出特征维度
        
        self.fc2 = nn.Linear(500, 10)
        #输出维度10,10分类

    def forward(self, x):  
        #print(x.shape)  #手写数字的输入维度,(N,1,28,28), N为batch_size
        x = F.relu(self.conv1(x)) # x = (N,50,24,24)
        x = F.max_pool2d(x, 2, 2) # x = (N,50,12,12)
        x = F.relu(self.conv2(x)) # x = (N,50,8,8)
        x = F.max_pool2d(x, 2, 2) # x = (N,50,4,4)
        x = x.view(-1, 4*4*50)    # x = (N,4*4*50)
        x = F.relu(self.fc1(x))   # x = (N,4*4*50)*(4*4*50, 500)=(N,500)
        x = self.fc2(x)           # x = (N,500)*(500, 10)=(N,10)
        return F.log_softmax(x, dim=1)  #带log的softmax分类,每张图片返回10个概率

3、初始化模型和定义优化函数

lr = 0.01
momentum = 0.5
model = Net().to(device) #模型初始化
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) #定义优化器

NLL loss的定义

ℓ ( x , y ) = L = { l 1 , … , l N } ⊤ , l n = − w y n x n , y n , w c = weight [ c ] ⋅ 1 { c ≠ ignore_index } \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_{y_n} x_{n,y_n}, \quad w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\} (x,y)=L={l1,,lN},ln=wynxn,yn,wc=weight[c]1{c=ignore_index}

4、定义训练和测试模型

def train(model, device, train_loader, optimizer, epoch, log_interval=100):
    model.train() #进入训练模式
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad() #梯度归零
        output = model(data)  #输出的维度[N,10] 这里的data是函数的forward参数x
        loss = F.nll_loss(output, target) #这里loss求的是平均数,除以了batch
		#F.nll_loss(F.log_softmax(input), target) :
		#单分类交叉熵损失函数,一张图片里只能有一个类别,输入input的需要softmax
		#还有一种是多分类损失函数,一张图片有多个类别,输入的input需要sigmoid
		        
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print("Train Epoch: {} [{}/{} ({:0f}%)]\tLoss: {:.6f}".format(
                epoch, 
                batch_idx * len(data), #100*32
                len(train_loader.dataset), #60000
                100. * batch_idx / len(train_loader), #len(train_loader)=60000/32=1875
                loss.item()
            ))
            #print(len(train_loader))

def test(model, device, test_loader):
    model.eval() #进入测试模式
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data) 
            test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
            #reduction='sum'代表batch的每个元素loss累加求和,默认是mean求平均
                       
            pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
            
            #print(target.shape) #torch.Size([32])
            #print(pred.shape) #torch.Size([32, 1])
            correct += pred.eq(target.view_as(pred)).sum().item()
            #pred和target的维度不一样
            #pred.eq()相等返回1,不相等返回0,返回的tensor维度(32,1)。

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

5、查看运行结果

epochs = 2
for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

save_model = True
if (save_model):
    torch.save(model.state_dict(),"mnist_cnn.pt") 
    #词典格式,model.state_dict()只保存模型参数


#同上,fashion_mnist_data数据测试
torch.manual_seed(53113)

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = test_batch_size = 32
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
    datasets.FashionMNIST('./fashion_mnist_data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,)) 
                   ])),
    batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.FashionMNIST('./fashion_mnist_data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=test_batch_size, shuffle=True, **kwargs)


lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

epochs = 2
for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

save_model = True
if (save_model):
    torch.save(model.state_dict(),"fashion_mnist_cnn.pt")

CNN模型的迁移学习

  • 很多时候当我们需要训练一个新的图像分类任务,我们不会完全从一个随机的模型开始训练,而是利用_预训练_的模型来加速训练的过程。我们经常使用在ImageNet上的预训练模型。
  • 这是一种transfer learning的方法。我们常用以下两种方法做迁移学习。
    • fine tuning: 从一个预训练模型开始,我们改变一些模型的架构,然后继续训练整个模型的参数。
    • feature extraction: 我们不再改变与训练模型的参数,而是只更新我们改变过的部分模型参数。我们之所以叫它feature extraction是因为我们把预训练的CNN模型当做一个特征提取模型,利用提取出来的特征做来完成我们的训练任务。

以下是构建和训练迁移学习模型的基本步骤:

  • 初始化预训练模型
  • 把最后一层的输出层改变成我们想要分的类别总数
  • 定义一个optimizer来更新参数
  • 模型训练
import numpy as np
import torchvision
from torchvision import datasets, transforms, models

import matplotlib.pyplot as plt
import time
import os
import copy
print("Torchvision Version: ",torchvision.__version__)

数据

我们会使用hymenoptera_data数据集,下载.

这个数据集包括两类图片, beesants, 这些数据都被处理成了可以使用ImageFolder <https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder>来读取的格式。我们只需要把data_dir设置成数据的根目录,然后把model_name设置成我们想要使用的与训练模型:

[resnet, alexnet, vgg, squeezenet, densenet, inception]

其他的参数有:

  • num_classes表示数据集分类的类别数
  • batch_size
  • num_epochs
  • feature_extract表示我们训练的时候使用fine tuning还是feature extraction方法。如果feature_extract = False,整个模型都会被同时更新。如果feature_extract = True,只有模型的最后一层被更新。

1、查看数据,只是查看作用

# Top level data directory. Here we assume the format of the directory conforms 
#   to the ImageFolder structure
data_dir = "./hymenoptera_data"
# Batch size for training (change depending on how much memory you have)
batch_size = 32


#蜜蜂和蚂蚁数据集不会自动下载,请到群文件下载,并放在当前代码目录下
#os.path.join() 连接路径,相当于.../data_dir/train
all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"),
                                transforms.Compose([
        transforms.RandomResizedCrop(input_size), #把每张图片变成resnet需要输入的维度224
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
    ]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)
#训练数据分batch,变成tensor迭代器

img = next(iter(loader))[0] #这个img是一个batch的tensor

img.shape


unloader = transforms.ToPILImage()  # reconvert into PIL image
#transforms:torchvision的子模块,常用的图像操作
#.ToPILImage() 把tensor或数组转换成图像
#详细转换过程可以看这个:https://blog.csdn.net/qq_37385726/article/details/81811466

plt.ion() #交互模式,默认是交互模式,可以不写
#详细了解看这个:https://blog.csdn.net/SZuoDao/article/details/52973621
#plt.ioff()

def imshow(tensor, title=None):
    image = tensor.cpu().clone()  # we clone the tensor to not do changes on it
    image = image.squeeze(0)      # remove the fake batch dimension 
    #这个.squeeze(0)看不懂,去掉也可以运行
    
    image = unloader(image) #tensor转换成图像
    plt.imshow(image)
    if title is not None:
        plt.title(title)
    plt.pause(1) # pause a bit so that plots are updated
    #可以去掉看看,只是延迟显示作用


plt.figure()
imshow(img[8], title='Image') 
imshow(img[9], title='Image')
imshow(img[10], title='Image')

3、把训练集和验证集分batch转换成迭代器

现在我们知道了模型输入的size,我们就可以把数据预处理成相应的格式。

data_transforms = {
    "train": transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    "val": transforms.Compose([
        transforms.Resize(input_size),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

print("Initializing Datasets and Dataloaders...")


# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
#把迭代器存放到字典里作为value,key是train和val,后面调用key即可。

# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#%%

inputs, labels=next(iter(dataloaders_dict["train"])) #一个batch
print(inputs.shape)
print(labels)

#%%

for inputs, labels in dataloaders_dict["train"]:
    #print(inputs)
    #print(labels)
    print(labels.size()) #最后一个batch不足32

#%% md

4、加载resnet模型并修改全连接层

#%%

# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"
# Number of classes in the dataset
num_classes = 2
# Number of epochs to train for 
num_epochs = 2
# Flag for feature extracting. When False, we finetune the whole model, 
#   when True we only update the reshaped layer params
feature_extract = True  #只更新修改的层

#%%

def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False #提取的参数梯度不更新

#%%

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    if model_name == "resnet":
        model_ft = models.resnet18(pretrained=use_pretrained) 
        #如果True,从imagenet上返回预训练的模型和参数
        
        set_parameter_requires_grad(model_ft, feature_extract)#提取的参数梯度不更新
        #print(model_ft) 可以打印看下
        num_ftrs = model_ft.fc.in_features 
        #model_ft.fc是resnet的最后全连接层
        #(fc): Linear(in_features=512, out_features=1000, bias=True)
        #in_features 是全连接层的输入特征维度
        #print(num_ftrs)
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        #out_features=1000 改为 num_classes=2
        input_size = 224 #resnet18网络输入图片维度是224,resnet34,50,101,152也是
        
    return model_ft, input_size
	model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
	print(model_ft)

#%%

5、查看需要更新的参数、定义优化器

#%%

next(iter(model_ft.named_parameters()))

#%%

len(next(iter(model_ft.named_parameters()))) #是元组,只有两个值

#%%

for name,param in model_ft.named_parameters():
    print(name) #看下都有哪些参数

#%%

# Send the model to GPU
model_ft = model_ft.to(device)

# Gather the parameters to be optimized/updated in this run. If we are
#  finetuning we will be updating all parameters. However, if we are 
#  doing feature extract method, we will only update the parameters
#  that we have just initialized, i.e. the parameters with requires_grad
#  is True.
params_to_update = model_ft.parameters() #需要更新的参数
print("Params to learn:")
if feature_extract:
    params_to_update = [] #需要更新的参数存放在此
    for name,param in model_ft.named_parameters(): 
        #model_ft.named_parameters()有啥看上面cell
        if param.requires_grad == True: 
#这里要知道全连接层之前的层param.requires_grad == Flase
#后面加的全连接层param.requires_grad == True
            params_to_update.append(param)
            print("\t",name)
else: #否则,所有的参数都会更新
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9) #定义优化器
# Setup the loss fxn
criterion = nn.CrossEntropyLoss() #定义损失函数

#%% md

6、定义训练模型

#%%

#训练测试合一起了
def train_model(model, dataloaders, criterion, optimizer, num_epochs=5):
    since = time.time()
    val_acc_history = [] 
    best_model_wts = copy.deepcopy(model.state_dict())#深拷贝上面resnet模型参数
#.copy和.deepcopy区别看这个:https://blog.csdn.net/u011630575/article/details/78604226 
    best_acc = 0.
    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs-1))
        print("-"*10)
        
        for phase in ["train", "val"]:
            running_loss = 0.
            running_corrects = 0.
            if phase == "train":
                model.train()
            else: 
                model.eval()
            
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                
                with torch.autograd.set_grad_enabled(phase=="train"):
                    #torch.autograd.set_grad_enabled梯度管理器,可设置为打开或关闭
                    #phase=="train"是True和False,双等号要注意
                    outputs = model(inputs)
                    loss = criterion(outputs, labels)
                    
                _, preds = torch.max(outputs, 1)
                #返回每一行最大的数和索引,prds的位置是索引的位置
                #也可以preds = outputs.argmax(dim=1)
                if phase == "train":
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                    
                running_loss += loss.item() * inputs.size(0) #交叉熵损失函数是平均过的
                running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
                #.view(-1)展开到一维,并自己计算
            
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects / len(dataloaders[phase].dataset)
       
            print("{} Loss: {} Acc: {}".format(phase, epoch_loss, epoch_acc))
            if phase == "val" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                #模型变好,就拷贝更新后的模型参数
                
            if phase == "val":
                val_acc_history.append(epoch_acc) #记录每个epoch验证集的准确率
            
        print()
    
    time_elapsed = time.time() - since
    print("Training compete in {}m {}s".format(time_elapsed // 60, time_elapsed % 60))
    print("Best val Acc: {}".format(best_acc))
    
    model.load_state_dict(best_model_wts) #把最新的参数复制到model中
    return model, val_acc_history

#%%

7、运行模型

#%%

# Train and evaluate
model_ft, ohist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs)

#%%

ohist

#%%

model_ft

#%%

# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, 
                                   num_classes, 
                                   feature_extract=False, #所有参数都训练
                                   use_pretrained=False)# 不要imagenet的参数
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), 
                              lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, 
                             dataloaders_dict, 
                             scratch_criterion, 
                             scratch_optimizer, 
                             num_epochs=num_epochs)

#%%


# Plot the training curves of validation accuracy vs. number 
#  of training epochs for the transfer learning method and
#  the model trained from scratch
# ohist = []
# shist = []

# ohist = [h.cpu().numpy() for h in ohist]
# shist = [h.cpu().numpy() for h in scratch_hist]

plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),scratch_hist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
  • 6
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值