一. YARN的由来
从Hadoop2开始,官方把资源管理单独剥离出来,主要是为了考虑后期作为一个公共的资源管理平台,任何满足规则的计算引擎都可以在它上面执行。
所以YARN可以是实现Hadoop集群的资源共享,不仅仅可以跑MapReduce,还可以跑Spark,Flink。
二.YARN架构
YARN主要负责集群资源的管理和调度,支持主从架构,主节点最多可以有2个,从节点可以有多个.
其中:
ResourceManager: 这是主节点,主要负责集群资源的分配和管理
NodeManager:这是从节点,主要负责当前机器资源管理
三.YARN资源管理模型
YARN主要管理内存和CPU这两种资源
当NodeManager节点启动的时候自动向ResourceManager注册,将当前节点上的可用CPU信息和内存信息注册上去。
这样所有的NodeManager注册完成以后,ResourceManager就知道目前集群的资源总量了。
打开YARN的8088管理界面
注意:这里面显示的资源是所有从节点的资源总和,不包括主节点的资源。
YARN的内存和CPU总量在 yarn-default.xml 通过以下两个参数配置:
(1) yarn.nodemanager.resource.memory-mb : 单节点可分配的物理内存总量,默认8G
(2) yarn.nodemanager.resource.cpu-vcores : 单节点可分配的虚拟CPU个数,默认8个
四.YARN的调度器
大家可以想象一下,我们集群的资源是有限的,在实际工作中会有很多人向集群提交任务,那这时候资源如何分配呢?
如果你提交了一个很占资源的任务,这一个任务就把集群中90%的资源都占用了,后面别人提交任务,剩下的资源就不够了,这时候怎么办?
YARN支持3中调度器:
(1) FIFO Scheduler : 先进先出(first in , first out)调度策略
(2) Capacity Scheduler : FIFO Scheduler的多多列版本
(3) FairScheduler : 多队列,多用户共享资源
(1) FIFO Scheduler : 先进先出,大家都按顺序排队,如果你的任务申请不到足够的资源,你就等着,等前面执行完了释放资源之后你再执行。这种在有些时候不合理,因为我们有一些任务的优先级比较高,我们希望任务提交上去就立刻开始执行,这个就实现不了了。
(2) Capacity Scheduler : FIFO Scheduler的多队列版本,我们把集群的资源分成多个队列。如图我们可以在queueA里面运行普通任务,在queueB中运行优先级比较高的任务。队列之间都是相互独立的。
(3) FairScheduler : 支持多队列,每个队列可配置一定的资源,每个队列共享所分的所有资源,假设我们向一个队列提交了一个任务,这个任务刚开始会占用整个队列的资源,当你再提交第二个任务的时候,第一个任务会把他的资源释放出来一部分给第二个任务使用。
在实际工作中我们一般使用(2) Capacity Scheduler,从hadoop2开始,Capacity Scheduler也是默认调度器。
五.YARN多资源队列配置和使用
我们增加2个队列,一个是online队列,一个是offline队列
然后向offline队列中提交一个mapreduce任务
online队列里面运行实时任务
offline队列里面运行离线任务
具体步骤如下:
(1) 修改 $HADOOP_HOME下的capacity-scheduler.xml配置文件
修改和增加以下参数,针对已有的参数,修改value中的值,针对没有的参数,则直接增加
这里的default是需要保留的,增加online,offline.
[root@bigdata01 hadoop]# vim capacity-scheduler.xml
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,online,offline</value>
<description>队列列表,多个队列之间使用逗号分割</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>70</value>
<description>default队列70%</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.online.capacity</name>
<value>10</value>
<description>online队列10%</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.offline.capacity</name>
<value>20</value>
<description>offline队列20%</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>70</value>
<description>Default队列可使用的资源上限.</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.online.maximum-capacity</name>
<value>10</value>
<description>online队列可使用的资源上限.</description>
</property>
<property>
<name>yarn.scheduler.capacity.root.offline.maximum-capacity</name>
<value>20</value>
<description>offline队列可使用的资源上限.</description>
</property>
记得每个节点都需要修改,然后重启集群后生效。
注意了,现在默认提交的任务还是会进入default队列,如果希望向offline队列提交任务的话,需要指定队列名称,不指定就进入默认队列。
package com.imooc.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
/**
* 指定队列名称
*
* Created by xuwei
*/
public class WordCountJobQueue {
/**
* Map阶段
*/
public static class MyMapper extends Mapper<LongWritable, Text,Text,LongWritable>{
Logger logger = LoggerFactory.getLogger(MyMapper.class);
/**
* 需要实现map函数
* 这个map函数就是可以接收<k1,v1>,产生<k2,v2>
* @param k1
* @param v1
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable k1, Text v1, Context context)
throws IOException, InterruptedException {
//输出k1,v1的值
//System.out.println("<k1,v1>=<"+k1.get()+","+v1.toString()+">");
//logger.info("<k1,v1>=<"+k1.get()+","+v1.toString()+">");
//k1 代表的是每一行数据的行首偏移量,v1代表的是每一行内容
//对获取到的每一行数据进行切割,把单词切割出来
String[] words = v1.toString().split(" ");
//迭代切割出来的单词数据
for (String word : words) {
//把迭代出来的单词封装成<k2,v2>的形式
Text k2 = new Text(word);
LongWritable v2 = new LongWritable(1L);
//把<k2,v2>写出去
context.write(k2,v2);
}
}
}
/**
* Reduce阶段
*/
public static class MyReducer extends Reducer<Text,LongWritable,Text,LongWritable>{
Logger logger = LoggerFactory.getLogger(MyReducer.class);
/**
* 针对<k2,{v2...}>的数据进行累加求和,并且最终把数据转化为k3,v3写出去
* @param k2
* @param v2s
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text k2, Iterable<LongWritable> v2s, Context context)
throws IOException, InterruptedException {
//创建一个sum变量,保存v2s的和
long sum = 0L;
//对v2s中的数据进行累加求和
for(LongWritable v2: v2s){
//输出k2,v2的值
//System.out.println("<k2,v2>=<"+k2.toString()+","+v2.get()+">");
//logger.info("<k2,v2>=<"+k2.toString()+","+v2.get()+">");
sum += v2.get();
}
//组装k3,v3
Text k3 = k2;
LongWritable v3 = new LongWritable(sum);
//输出k3,v3的值
//System.out.println("<k3,v3>=<"+k3.toString()+","+v3.get()+">");
//logger.info("<k3,v3>=<"+k3.toString()+","+v3.get()+">");
// 把结果写出去
context.write(k3,v3);
}
}
/**
* 组装Job=Map+Reduce
*/
public static void main(String[] args) {
try{
//指定Job需要的配置参数
Configuration conf = new Configuration();
//解析命令行中-D后面传递过来的参数,添加到conf中
String[] remainingArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
//创建一个Job
Job job = Job.getInstance(conf);
//注意了:这一行必须设置,否则在集群中执行的时候是找不到WordCountJob这个类的
job.setJarByClass(WordCountJobQueue.class);
//指定输入路径(可以是文件,也可以是目录)
FileInputFormat.setInputPaths(job,new Path(remainingArgs[0]));
//指定输出路径(只能指定一个不存在的目录)
FileOutputFormat.setOutputPath(job,new Path(remainingArgs[1]));
//指定map相关的代码
job.setMapperClass(MyMapper.class);
//指定k2的类型
job.setMapOutputKeyClass(Text.class);
//指定v2的类型
job.setMapOutputValueClass(LongWritable.class);
//指定reduce相关的代码
job.setReducerClass(MyReducer.class);
//指定k3的类型
job.setOutputKeyClass(Text.class);
//指定v3的类型
job.setOutputValueClass(LongWritable.class);
//提交job
job.waitForCompletion(true);
}catch(Exception e){
e.printStackTrace();
}
}
}
//解析命令行中-D后面传递过来的参数,添加到conf中
String[] remainingArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
将JAVA代码编译打包,上传到服务器。
[root@bigdata01 hadoop-3.2.0]# hadoop jar db_hadoop-1.0-SNAPSHOT-jar-with-dependencies.jar com.imooc.mr.WordCountJobQueue -Dmapreduce.job.queuename=offline /test/hello.txt /outqueue
可以看到YARN根据我们指定的队列名称执行了任务。