麻雀算法SSA,优化VMD,适应度函数为最小包络熵,包含MATLAB源代码

针对大家评论区给出的很多问题,作者一直都有关注,因此在这里又写了一篇文章,而且思路与这篇文章有不同之处,至于具体的不同之处放在下一篇文章了,大家感兴趣的可以移步观看,下一篇文章可以说是作者的呕心力作。

(4条消息) 白鲸优化算法优化VMD参数,并提取特征向量,以西储大学数据为例,附MATLAB代码_今天吃饺子的博客-CSDN博客https://blog.csdn.net/woaipythonmeme/article/details/131226447?spm=1001.2014.3001.5501好了,废话到此为止!接下来讲正文!

同样以西储大学数据集为例,选用105.mat中的X105_BA_time.mat数据。

首先进行VMD分解,采用麻雀优化算法(SSA)对VMD的两个关键参数(惩罚因子α和模态分解数K)进行优化,以最小包络熵为适应度值。其他智能优化算法同样适用,关键要学会最小包络熵代码的编写,网上的五花八门,代码中会对最小包络熵部分进行详细注释。

先上结果图:

实验过程中,会实时显示每次寻优后的最小包络熵值和VMD对应的两个最佳参数。本次寻优共100次(自己可以随意更改寻优次数)。

可以看到寻优100次后,最小包络熵为7.4036,对应两个vmd的最佳参数为122,8,其中惩罚因子为122,模态分解数为8。

 收敛曲线如下所示:

代码包含一个脚本,三个函数!

主函数脚本:其中惩罚因子α的范围是[100-2500],模态分解数K的范围是[3-10]。这里大家可以自行更改,但是一般建议是这样

clear all 
clc
addpath(genpath(pwd))
CostFunction=@(x) Cost(x);        % 适应度函数的调用,包络熵值,详情请看Cost
%设置SSA算法的参数
Params.nVar=2;                           % 优化变量数目
Params.VarSize=[1 Params.nVar];          % Size of Decision Variables Matrix
Params.VarMin=[100 3];      % 下限值,分别是a,k
Params.VarMax=[2500 10];        % 上限值
Params.MaxIter=30;       % 最大迭代数目
Params.nPop=30;        % 种群规模
[particle3, GlobalBest3,SD,GlobalWorst3,Predator,Joiner] =  Initialization(Params,CostFunction,'SSA');  %初始化SSA参数
disp(['***采用SSA算法开始寻优***'])
[GlobalBest,SSA_curve] =  SSA(particle3,GlobalBest3,GlobalWorst3,SD,Predator,Joiner,Params,CostFunction);  %采用SSA参数优化VMD的两个参数
fMin = GlobalBest.Cost;
bestX = GlobalBest.Position;
%画适应度函数图
figure
plot(1:Params.MaxIter,SSA_curve,'Color','r')
title('Objective space')
xlabel('Iteration');
set(gca,'xtick',0:10:Params.MaxIter);
ylabel('Best score obtained so far');
legend('SSA优化VMD')
display(['The best solution obtained by SSA is : ', num2str(round(bestX))]);  %输出最佳位置
display(['The best optimal value of the objective funciton found by SSA is : ', num2str(fMin)]);  %输出最佳适应度值

关于VMD函数的详解和相关图像的绘制,可以参考这个文章:(5条消息) VMD分解,matlab代码,包络线,包络谱,中心频率,峭度值,能量熵,近似熵,包络熵,希尔伯特变换,包含所有程序MATLAB代码,-西储大学数据集为例_今天吃饺子的博客-CSDN博客

完整代码获取:下方卡片回复关键词:SSAVMD

觉着不错的给博主留个小赞吧!您的一个小赞就是博主更新的动力!谢谢!

03-08
### SSA-VMD 技术概述 SSA-VMD 是一种结合奇异谱分析(SSA)和变分模态分解(VMD)的技术,广泛应用于信号处理领域。该方法能够有效地分离复杂信号中的不同成分并进行特征提取[^2]。 ### 技术原理 #### 奇异谱分析 (SSA) SSA是一种用于时间序列分析的方法,可以将原始数据分解成趋势项、周期性和噪声等多个组成部分。其主要优点在于无需假设模型形式即可完成数据分析工作。具体过程涉及构建轨迹矩阵并通过SVD分解来识别重要模式。 #### 变分模态分解 (VMD) VMD基于自适应约束优化框架下的多尺度分解算法,旨在寻找最优K个中心频率及其带宽使得各IMF之和最接近原信号的同时满足预设条件。相比EMD等传统方法,VMD具有更好的稳定性和抗噪能力。 ### 应用实例 在实际应用中,SSA-VMD被证明对于非平稳随机振动信号有着良好的去噪效果。例如,在机械故障诊断方面,通过对轴承运行状态监测得到的加速度响应曲线运用此联合算法可有效剔除环境干扰因素影响从而提高检测精度;另外,在电力系统暂态事件辨识上也展现了优越性能——能快速准确地区分不同类型扰动波形以便采取相应措施保障电网安全可靠供电。 ```python import numpy as np from ssa_vmd import SSAModule, VMDModule # 假定已安装相关库 def process_signal(signal_data): """ 使用SSA-VMD处理输入信号 参数: signal_data : array_like 输入的时间序列数据 返回: decomposed_signals : list of ndarray 经过SSA-VMD分解后的多个子信号列表 """ # 初始化模块对象 ssa_module = SSAModule() vmd_module = VMDModule() # 执行SSA操作获取初步净化的数据 cleaned_data = ssa_module.execute(signal_data) # 进一步采用VMD对清理过的数据做精细划分 decomposed_signals = vmd_module.decompose(cleaned_data) return decomposed_signals ```
评论 178
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值