多尺度卷积MCNN和它的一些组合体,MATLAB代码

本期带来在故障诊断领域用的比较多的、且效果比较好的一个故障诊断模型---多尺度卷积神经网络MCNN(multi-scale convolutional neural network)

为了方便大家的学习,本期整理了MCNN相关的不同组合网络:

e5ab4868056075a6f38d8f7f3b4cd6bb.png

一次性获取上述模型,获取方式移步文章末尾。


MCNN: 多尺度卷积神经网络是CNN的变体, 拥有比CNN更加强大的特征提取能力。MCNN使用不同尺寸的卷积核对特征进行提取,这样做的好处是, 不同尺寸卷积核具有不同大小的感受野, 从而可以提取到低频率以及高频率的特征, 将这些特征叠加起来,以形成多尺度特征。使用多尺度的特征进行模型训练时, 结果往往要优于单一卷积神经网络。

本期搭建的网络结构如下,以MCNN-LSTM为例:

463f55c031b2eb763da11137601848c5.png

MATLAB中可以直接看到每层的网络单元的具体参数:

811e1d43e0c028cc01686416126b6e46.png


本期模型诊断思路如下:

d7a6ae2d8251a48a5758ceee6f9277f8.gif

①对官方下载的西储大学数据进行处理,划分10种故障类型;

②对第一步处理得到的数据,采用同步压缩小波变换(SWT)的方法进行特征提取,换将一维振动信号转换为二维图像。SWT具有多尺度分析的能力,可以在不同尺度上对信号进行分析,提供更全面的频率信息。

③采用第二步得到的二维图像进行裁剪压缩,送入MCNN网络以及它的组合网络进行训练与测试。

3a7813f07aad51403c2d87b648b634f7.gif

本期提供代码模型的几个优点:

  1. 采用了同步压缩感知方法将一维图转换为二维图,增强了故障特征;

  2. 选用了“交叉熵”损失函数作为网络训练的依据;

  3. 划分了训练集、验证集、测试集,在网络训练的时候采用验证集不断降低损失,从而不会影响模型的泛化能力;

  4. 采用了T-SNE降维方法,可视化神经网络识别前后的效果;

  5. 组合了几个常用的和新颖的网络:MCNN-BiGRU、MCNN-BiGRU-Attention、MCNN-BiLSTM、MCNN-GRU、MCNN -KELM、MCNN-LSTM、MCNN-SVM。

内容详解

一、数据处理

对官方下载的西储大学数据进行处理,步骤如下:

  1. 一共加载10种数据,然后取每个数据的DE_time(%DE是驱动端数据 FE是风扇端数据 BA是加速度数据 选择其中一个就行)

  2. 设置滑动窗口w,每个数据的故障样本点个数s,每个故障类型的样本量m

  3. 将所有的数据滑窗完毕之后,综合到一个data变量中

  4. 有关西储大学数据的处理之前有文章也讲过,大家可以看这篇文章:西储大学轴承诊断数据处理,matlab免费代码获取

    最后得到的数据是一个2000*1024的矩阵,其中2000是样本量,1024是特征。2000又等于200*10,10是指10种故障状态,200是指每种状态有200个样本。在代码中是data_total_1797.mat

二、SWT特征提取

SWT变换结果:

4ef58961b8176adafd972d3cd50c76f1.png

三,结果展示

本期模型数据中,一共取了10种状态的数据,每种状态数据有200个样本。训练集:验证集:测试集比例为(12:3:5),你也可以任意更改比例。

结果展示

首先是MCNN网络:

bdba40e31d0943e4fb041a4e50c94e81.png

7686b035b7021a7a87560181d2df5b87.png

MCNN-BiGRU网络:

0e1532b68f009831e14437199bd75133.png

MCNN-KELM网络:

3f37e50aff1bfbd665cd97d78b59a482.png

MCNN-SVM网络:

c9ba95ea7de219ac40579056fb8ec42d.png

剩下几个就不一一展示啦,效果都是很不错滴!

代码目录:

a5a885ee5a9ef61a333b41dc7152fdfd.png

MATLAB版本要求:2023及其以上。

98af7df4a5405f87c250feccdc6ce37e.png

参考文献:

[1]龚俊,张月义,陈思戢,等 .基于 SWT与改进卷积神经网络的轴承故障诊断[J].现代电子技术,2024,47(6):68‐74

[2]陈悦然,牟莉.基于MCNN-BiGRU-Attention的轴承故障诊断.计算机系统应用,2023,32(9):125-131

[3]胡梦婷, 罗晨. 基于MCNN-LSTM和交叉熵损失函数的轴承故障诊断[J]. 制造技术与机床, 2024, (9): 16-22.

代码获取

链接:https://mbd.pub/o/bread/mbd-Z5eTmZ5q

或者点击下方阅读原文获取。


已将此代码添加至故障诊断全家桶中

已购买故障诊断全家桶的小伙伴,可以直接跳转以下链接下载哦!

故障诊断全家桶获取链接:

一次购买永久更新!目前已经包含数十种方法了!

故障诊断方向必看!精心整理!

https://mbd.pub/o/bread/ZJ2Ym5ts

1a7b0e01691bbdb7d7e816e6f36dcd84.png


获取更多代码:

5d2f0d8bc5b95e8857341f3a4972b004.png

或者复制链接跳转:
https://docs.qq.com/sheet/DU3NjYkF5TWdFUnpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淘个代码_

不想刀我的可以选择爱我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值