复变积分/复积分

复变积分

复变积分是复平面 C \mathbb{C} C 上的线积分。设 C C C C \mathbb{C} C 内的一条由 A A A 点到 B B B 点的曲线,函数 f ( z ) f(z) f(z) C C C上有定义。把曲线 C C C任意分割为 n n n 段, ζ k \zeta_{k} ζk z k − 1 → z k z_{k-1} \rightarrow z_{k} zk1zk 段上的任意一点,作和数
∑ k = 1 n f ( ζ k ) ( z k − z k − 1 ) = ∑ k = 1 n f ( ζ k ) Δ z k \sum_{k=1}^{n} f\left(\zeta_{k}\right)\left(z_{k}-z_{k-1}\right)=\sum_{k=1}^{n} f\left(\zeta_{k}\right) \Delta z_{k} k=1nf(ζk)(zkzk1)=k=1nf(ζk)Δzk
其中 Δ z k = z k − z k − 1 \Delta z_{k}=z_{k}-z_{k-1} Δzk=zkzk1. 若当 n → ∞ , max ⁡ ∣ Δ z k ∣ → 0 n \rightarrow \infty, \max \left|\Delta z_{k}\right| \rightarrow 0 n,maxΔzk0 时,此和数的极限存在,且极限值与 ζ k \zeta_{k} ζk 的选取无关,则称此极限值为函数 f ( z ) f(z) f(z) 沿曲线 C C C 的积分,记为
∫ C f ( z ) d z = lim ⁡ max ⁡ ∣ Δ z k ∣ → 0 ∑ k = 1 n f ( ζ k ) Δ z k \int_{C} f(z) \mathrm{d} z=\lim _{\max \left|\Delta z_{k}\right| \rightarrow 0} \sum_{k=1}^{n} f\left(\zeta_{k}\right) \Delta z_{k} Cf(z)dz=maxΔzk0limk=1nf(ζk)Δzk
利用微积分中曲线积分的知识对复变函数进行积分得
∫ C f ( z ) d z = ∫ C ( u d x − v d y ) + i ∫ C ( v d x + u d y ) \int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y) Cf(z)dz=C(udxvdy)+iC(vdx+udy)

C a u c h y Cauchy Cauchy 定理

Cauchy 定理:如果函数 f ( z ) f(z) f(z)在有界闭区域 D ˉ \bar{D} Dˉ中解析,则沿 D ˉ \bar{D} Dˉ的边界 C C C有:
∮ C f ( z ) d z = 0 \oint_C f(z) dz=0 Cf(z)dz=0
当被积复变函数在区域内有奇点(不解析的点)时,需要把奇点排除在外,设 D D D是由复围线 C = C 0 + C 1 − + C 2 − + ⋯ + C n − C=C_{0}+C_{1}^{-}+C_{2}^{-}+\cdots+C_{n}^{-} C=C0+C1+C2++Cn所围成的复连通区域,函数 f ( z ) f(z) f(z) D D D 内解析,则Cauchy积分还可写为

∮ C 0 f ( z ) d z = ∑ i = 1 n ∮ C i f ( z ) d z \oint_{C_0} f(z) dz=\sum_{i=1}^n \oint_{C_i}f(z)dz C0f(z)dz=i=1n

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值