线性偏微分方程的通解

线性偏微分方程的通解

观前提示:此章内容笔者写的不是很好,可以结合教材相关内容观看,本文主要介绍了线性算符以及线性偏微分方程的解,对理解此类方程以及线性算符很有帮助,但跳过此篇继续观看也不会造成后续内容不理解。

之前我们介绍的如波动方程、扩散方程等二阶偏微分方程都是线性偏微分方程,也就是说,在方程中只出现对于末知函数的线性运算。引进线性算符 L ^ \hat{L} L^ 的记号,则线性偏微分方程都可以写成
L ^ [ u ] = f \hat{L}[u]=f L^[u]=f
的形式,其中 u u u 是末知函数, f f f 是已知函数,称为方程的非齐次项。若 f ≡ 0 f \equiv 0 f0,则称方程是齐次的。我们所用到的方程常见算符见下表,
 方 程 类 型   方 程   线 性 算 符  L ^  波动方程  ∂ 2 u ∂ t 2 − a 2 ∇ 2 u = f L ^ ≡ ∂ 2 ∂ t 2 − a 2 ∇ 2  热传导方程  ∂ u ∂ t − κ ∇ 2 u = f L ^ ≡ ∂ ∂ t − κ ∇ 2  Poisson 方程  ∇ 2 u = f L ^ ≡ ∇ 2  Helmholtz 方程  ∇ 2 u + k 2 u = f L ^ ≡ ∇ 2 + k 2 \begin{array}{llll} \hline \text { 方 程 类 型 } & \text { 方 程 } & \text { 线 性 算 符 } \hat{L} \\ \hline \text { 波动方程 } & \frac{\partial^{2} u}{\partial t^{2}}-a^{2} \nabla^{2} u=f & \hat{L} \equiv \frac{\partial^{2}}{\partial t^{2}}-a^{2} \nabla^{2} \\ \hline \text { 热传导方程 } & \frac{\partial u}{\partial t}-\kappa \nabla^{2} u=f & \hat{L} \equiv \frac{\partial}{\partial t}-\kappa \nabla^{2} \\ \hline \text { Poisson 方程 } & \nabla^{2} u=f & \hat{L} \equiv \nabla^{2} \\ \hline \text { Helmholtz 方程 } & \nabla^{2} u+k^{2} u=f & \hat{L} \equiv \nabla^{2}+k^{2} \\ \hline \end{array}       波动方程  热传导方程  Poisson 方程  Helmholtz 方程    t22ua22u=ftuκ2u=f2u=f2u+k2u=f 线    L^L^t22a22L^tκ2L^2L^2+k2
根据线性算符的定义
L ^ [ c 1 u 1 + c 2 u 2 ] = c 1 L ^ [ u 1 ] + c 2 L ^ [ u 2 ] ( c 1 , c 2 为 常 数 ) \hat{L}\left[c_{1} u_{1}+c_{2} u_{2}\right]=c_{1} \hat{L}\left[u_{1}\right]+c_{2} \hat{L}\left[u_{2}\right] \quad\left(c_{1}, c_{2}\right. 为常数 ) L^[c1u1+c2u2]=c1L^[u1]+c2L^[u2](c1,c2)
由线性代数的知识,我们可以得到以下推论:

  1. u 1 u_{1} u1 u 2 u_{2} u2 都是齐次方程 L ^ [ u ] = 0 \hat{L}[u]=0 L^[u]=0 的解, L ^ [ u 1 ] = 0 , L ^ [ u 2 ] = 0 \hat{L}\left[u_{1}\right]=0, \quad \hat{L}\left[u_{2}\right]=0 L^[u1]=0,L^[u2]=0 ,则它们的线性组合 c 1 u 1 + c 2 u 2 c_{1} u_{1}+c_{2} u_{2} c1u1+c2u2 也是该齐次方程的解,

L ^ [ c 1 u 1 + c 2 u 2 ] = 0. \hat{L}\left[c_{1} u_{1}+c_{2} u_{2}\right]=0 . L^[c1u1+c2u2]=0.

  1. u 1 u_{1} u1 u 2 u_{2} u2 都是同一个非齐次方程 L ^ [ u ] = f \hat{L}[u]=f L^[u]=f 的解, L ^ [ u 1 ] = f , L ^ [ u 2 ] = f \hat{L}\left[u_{1}\right]=f, \quad \hat{L}\left[u_{2}\right]=f L^[u1]=f,L^[u2]=f,则它们的差 u 1 − u 2 u_{1}-u_{2} u1u2 一定是相应的齐次方程的特解, L ^ [ u 1 − u 2 ] = 0 \hat{L}\left[u_{1}-u_{2}\right]=0 L^[u
  • 6
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值