复变函数的积分

复变函数的积分化解成曲线积分的问题。

那化成第一类曲线积分还是第二类曲线积分?(高等数学 中有讲第一类曲线积分和第二类曲线积分)。

路径是有方向的,由起点和终点不同,路径有正向和负向。

复变函数的积分归结起来实际上是第二类曲线积分。

f(z)=u(x,y)+v(x,y)i

先对其做一个定义。

1、有向曲线。2。有向闭曲线。

 2、假设一个复变函数 w=f(z)在区域D内,C为D内起点为A,终点为B的一条光滑的有向曲线。(参数方程可导).

曲线C要分成4个步骤。

1、分割 

将曲结C分割 ,起点A=Z_{0},Z_{1},Z_{2},Z_{3},..............Z_{N}=B

在曲线中插入N个分点。

2、进行近似。

在每一个小的分段上,任给一个\xi _{i},属于\widehat{z_{k-1} z_{k}}的弧段。

3、求和(跟积分的定义完全一致)

S_{n}=\sum_{k=1}^{n}f(\xi _{i})\bigtriangleup z_{k}

从上图找一个点代到上面的公式中。

\bigtriangleup z_{k}=z_{k}-z_{k-1}的差值 ,长度

4、求极限。

\lim_{z\rightarrow 0}f(z_{k})\bigtriangleup z_{k}记为\int _{c}f(z)dz

称为f(z)沿着曲线C的积分。和第二类曲线积分非常类似。

若C为闭曲线,记为\oint _{c}f_{z}dz

注意,

1.如果 在复域上的曲线C落在实轴上,如图。

曲线   a<x<b,f(z)=u(x)

那么

\int _{c}f(z)dz=\int_{b}^{a}u(x)dx

2.f(z)=u(x,y)+iv(x,y)(实部和虚部)

\bigtriangleup z_{k}=z_{k}-z_{k-1}=(X_{R}-X_{R-1})+i(y_{k}-y_{k-1}) =\Delta X_{k}+i\Delta y_{k}

代入第三步的公式中。

z_{k}=\xi _{k}+\eta _{k}  ,(z_{k}也是复数)

f(z)=u(x,y)+v(x,y)i

\sum_{k=1}^{n}f(z_{k} )\bigtriangleup z_{k}=\sum_{k=1}^{n}[u(\xi _{k},\eta _{k})+iv(\xi _{k},\eta _{k})](\Delta x_{k}+i\Delta y_{k})

实部和虚部分开。

其实就是如下的\int _{c}f(z)dz=f(u+iv)dx+iy=\int_{c} (u+iv)(dx+idy)=\int_{c} (udx-vdy)+i(vdx+udy)

对于曲线上的复变函数的积分,可以把它理解为是第二类曲线积分。

积分存在定理:如果 f(Z)=u(x,y)+iv(x,y)在D内处处连续,则积分存在。

积分与路径无关。

苛西古萨定理

如果 f(z)在单连通区域B内处处解析,沿着B内的任一条封闭曲线C,积分值 为0,

\oint _{c}f(z)dz=0.

C为B的边界,f(z)在B内与C上解析,则

\oint _{c}f(z)dz=0

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值