正交曲线坐标系中的分离变量

正交曲线坐标系中的分离变量

这一节介绍了柱坐标系及球坐标系下亥姆霍兹方程如何进行分离变量,通过变量的分离,我们顺理成章地引入了勒让德函数、贝塞尔函数、球谐函数等数理方程常用函数。读者可以先行浏览一遍了解方程推导过程,待特殊函数掌握之后再来仔细回忆回味。

柱坐标系下的亥姆霍兹方程

柱坐标系下 { ∇ 2 u + λ u = 0 u = R ( ρ ) Φ ( φ ) Z ( z ) \left\{\begin{array}{l}\nabla^2u+\lambda u=0\\u=R(\rho)\Phi(\varphi)Z(z)\end{array}\right. { 2u+λu=0u=R(ρ)Φ(φ)Z(z)

在数学物理方程相关介绍中我们讨论过,亥姆霍兹方程中的常数 λ \lambda λ与时间有关。

带入柱坐标系中 ∇ 2 u \nabla^2 u 2u的表达式则有
1 ρ R d d ρ ( ρ d R   d ρ ) + 1 ρ 2 ( 1 Φ d 2 Φ d φ 2 ) + λ = − 1 Z d 2 Z   d z 2 = μ \frac{1}{\rho R} \frac{\mathrm{d}}{\mathrm{d} \rho}\left(\rho \frac{\mathrm{d} R}{\mathrm{~d} \rho}\right)+\frac{1}{\rho^{2}}\left(\frac{1}{ \Phi} \frac{\mathrm{d}^{2} \Phi}{\mathrm{d} \varphi^{2}}\right)+\lambda=-\frac{1}{Z} \frac{\mathrm{d}^{2} Z}{\mathrm{~d} z^{2}}=\mu ρR1dρd(ρ dρdR)+ρ21(Φ1dφ2d2Φ)+λ=Z1 dz2d2Z=μ
由于自然边界条件限制, 1 Φ d 2 Φ d φ 2 \frac{1}{ \Phi} \frac{\mathrm{d}^{2} \Phi}{\mathrm{d} \varphi^{2}} Φ1dφ2d2Φ 只能取 − n 2 -n^2 n2 ( n n n 为正整数),令 λ − μ = k 2 \lambda-\mu=k^2 λμ=k2,则 ρ 2 R ′ ′ + ρ R ′ + ( k 2 ρ 2 − n 2 ) R = 0 \rho^{2} R^{\prime \prime}+\rho R^{\prime}+\left(k^{2} \rho^{2}-n^{2}\right) R=0 ρ2R+ρR+(k2ρ2n2)R=0

综上所述,通过在柱坐标中分离变量,解偏微分方程 ∇ 2 u + λ u = 0 \nabla^2u+\lambda u=0 2u+λu=0 的问题,就化为了解三个常微分方程
{ Z ′ ′ + μ Z = 0 Φ ′ ′ + n 2 Φ = 0 ρ 2 R ′ ′ + ρ R ′ + ( k 2 ρ 2 − n 2 ) R = 0 径 向 方 程 \left\{\begin{array}{l} Z^{\prime \prime}+\mu Z=0 \\ \Phi^{\prime \prime}+n^{2} \Phi=0 \\ \rho^{2} R^{\prime \prime}+\rho R^{\prime}+\left(k^{2} \rho^{2}-n^{2}\right) R=0\quad 径向方程 \end{array}\right. Z+μZ=0Φ+n2Φ=0ρ2R+ρR+(k2ρ2n2)R=0
的问题,其中 μ 、 n 2 、 k 2 \mu 、 n^{2} 、 k^{2} μn2k2 都是在分离变量过程中所引人的常数,与弦的振动问题一样,它们不能任意取值,而要根据边界条件取某些特定的值,它们称为上述方程的本征值。
方程 Z ′ ′ + μ Z = 0 Z^{\prime \prime}+\mu Z=0 Z+μZ=0 Φ ′ ′ + n 2 Φ = 0 \Phi^{\prime \prime}+n^{2} \Phi=0 Φ+n2Φ=0 是常系数常微分方程,其解易于得到。方程 ρ 2 R ′ ′ + ρ R ′ + ( k 2 ρ 2 − n 2 ) R = 0 \rho^{2} R^{\prime \prime}+\rho R^{\prime}+\left(k^{2} \rho^{2}-n^{2}\right) R=0 ρ2R+ρR+(k2ρ2n2)R=0 是变系数常微分方程,若作变换 x = k ρ , y ( x ) = R ( ρ ) x=k \rho, y(x)=R(\rho) x=kρ,y(x)=R(ρ),则可化为
x 2 y ′ ′ + x y ′ + ( k 2 − n 2 ) y = 0 x^{2} y^{\prime \prime}+x y^{\prime}+\left(k^{2}-n^{2}\right) y=0 x2y

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值