分离变量法

分离变量法核心思路

分离变量法的核心思路是,将PDE(偏微分方程)变为多个ODE(常微分方程),那么我们如何进行呢?

PDE和ODE的一个显著不同是:PDE的自变量一定有两个以上,而ODE的自变量只有一个,那么我们能否将多个自变量拆分使求解PDE变为求解ODE呢?如果满足PDE的自变量 u ( x , t ) u(x, t) u(x,t) 是某种特别的形式,例如
u ( x , t ) = X ( x ) T ( t ) , u(x, t)=X(x) T(t), u(x,t)=X(x)T(t),
可以多个一元函数相乘得到,那么每个一元函数 X ( x ) X(x) X(x) T ( t ) T(t) T(t) 满足的方程应该都是ODE,只要能求出 X ( x ) X(x) X(x) T ( t ) T(t) T(t),就可能求出 u ( x , t ) u(x, t) u(x,t)。这样我们就把求解PDE问题转变为求解ODE问题,这就是分离变量法的思路。

ODE求解思路:先求出微分方程的特解,由线性无关的特解叠加出通解,再用定解条件去确定叠加系数。

在力学中,驻波的表达式为
u ( x , t ) = 2 A cos ⁡ 2 π x λ cos ⁡ 2 π γ t u(x, t)=2 A \cos \frac{2 \pi x}{\lambda} \cos 2 \pi \gamma t u(x,t)=2Acosλ2πxcos2πγt
这使我们自然想到,对于定解问题可设其特解为
u ( x , t ) = X ( x ) T ( t ) u(x, t)=X(x) T(t) u(x,t)=X(x)T(t)
其中 X ( x ) X(x) X(x) T ( t ) T(t) T(t) 分别只是变数 x x x t t t 的函数。为了弄清楚定解问题究竟有什么样的驻波解,应将 u ( x , t ) = X ( x ) T ( t ) u(x, t)=X(x) T(t) u(x,t)=X(x)T(t) 式分别代人方程和定解条件中。

考虑长为 l l l 、两端固定的弦的自由振动, 方程及定解条件为
∂ 2 u ∂ t 2 − a 2 ∂ 2 u ∂ x 2 = 0 , 0 < x < l , t > 0 , u ∣ x = 0 = 0 , u ∣ x = l = 0 , t ⩾ 0 , u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) , 0 ⩽ x ⩽ l . \begin{array}{ll} \frac{\partial^{2} u}{\partial t^{2}}-a^{2} \frac{\partial^{2} u}{\partial x^{2}}=0, & 0<x<l, t>0, \\ \left.u\right|_{x=0}=0, & \left.u\right|_{x=l}=0, & t \geqslant 0, \\ \left.u\right|_{t=0}=\phi(x), & \left.\frac{\partial u}{\partial t}\right|_{t=0}=\psi(x), & 0 \leqslant x \leqslant l . \end{array} t22ua2x22u=0,ux=0=0,ut=0=ϕ(x),0<x<l,t>0,ux=l=0,tut=0=ψ(x),t0,0xl.

分离变量法求解步骤

求解分为四步:分离变量、求解本征值、求特解并叠加出一般解、利用本征函数的正交性叠加系数。

详细求解过程每本数理方法课本上都有详细介绍,证明篇幅也较长,故笔者只对其进行简要说明。

分离变量:我们希望求得的特解具有分离变量的形式,则 u ( x , t ) = X ( x ) T ( t ) u(x, t)=X(x) T(t) u(x,t)=X(x)T(t),带回波动方程则有 X ( x ) T ′ ′ ( t ) = a 2 X ′ ′ ( x ) T ( t ) X(x) T^{\prime \prime}(t)=a^{2} X^{\prime \prime}(x) T(t) X(x)T(t)=a2X(x)T(t),在波动方程中,左端和右端相等,就必须共同等于一个既与 x x x 无关、又与 t t t 无关的常数 − λ -\lambda λ 1 a 2 T ′ ′ ( t ) T ( t ) = X ′ ′ ( x ) X ( x ) = − λ \frac{1}{a^{2}} \frac{T^{\prime \prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda a21T(t)T(t)=X(x)X(x)=λ,上面的结果又可以写成
T ′ ′ ( t ) + λ a 2 T ( t ) = 0 , X ′ ′ ( x ) + λ X ( x ) = 0. \begin{aligned} &T^{\prime \prime}(t)+\lambda a^{2} T(t)=0, \\ &X^{\prime \prime}(x)+\lambda X(x)=0 . \end{aligned} T(t)+λa2T(t)=0,X(x)+λX(x)=0.
这样我们就得到了两个常微分方程,同时引入了一个待定常数 λ \lambda λ

求解本征值

分离变量的结果是得到了多个含有待定常数的齐次ODE和齐次边界条件,它们一同构成常微分方程的本征值问题。当待定参数 λ \lambda λ 取某些特定值时,可以有同时满足ODE X ′ ′ ( x ) + λ X ( x ) = 0 X^{\prime \prime}(x)+\lambda X(x)=0 X(x)+λX(x)=0与齐次边界条件 u ∣ x = 0 = 0 , u ∣ x = l = 0 \left.u\right|_{x=0}=0, \left.u\right|_{x=l}=0 ux=0=0,ux=l=0的非零解 X ( x ) X(x) X(x) λ \lambda λ 的这些特定值称为本征值,相应的非零解 X ( x ) X(x) X(x)称为本征函数。

详细过程略去

最终我们求得了所有的本征值 λ n \lambda_{n} λn 以及相应的本征函数 X n ( x ) X_{n}(x) Xn(x),有无穷多组,可以用脚标 n n n 进行标记。

求特值并叠加出一般解

在求解本征值问题后, 将本征值 λ n \lambda_{n} λn 代入方程 T ′ ′ ( t ) + λ a 2 T ( t ) = 0 T^{\prime \prime}(t)+\lambda a^{2} T(t)=0 T(t)+λa2T(t)=0,求出相应的 T n ( t ) T_{n}(t) Tn(t) T n ( t ) = C n ′ cos ⁡ n π l a t + D n ′ sin ⁡ n π l a t T_{n}(t)=C_{n}^{\prime} \cos \frac{n \pi}{l} a t+D_{n}^{\prime} \sin \frac{n \pi}{l} a t Tn(t)=Cncoslnπat+Dnsinlnπat

因此,就得到了同时满足偏微分方程和边界条件的特解
u n ( x , t ) = ( C n cos ⁡ n π l a t + D n sin ⁡ n π l a t ) sin ⁡ n π l x , n = 1 , 2 , 3 , ⋯   . u_{n}(x, t)=\left(C_{n} \cos \frac{n \pi}{l} a t+D_{n} \sin \frac{n \pi}{l} a t\right) \sin \frac{n \pi}{l} x, \quad n=1,2,3, \cdots . un(x,t)=(Cncoslnπat+Dnsinlnπat)sinlnπx,n=1,2,3,.
这样的特解有无穷多个,每个特解都满足齐次偏微分方程和齐次边界条件,但单独一个特解不足以满足给定的初始条件,我们需要将全部特解叠加起来,得到
u ( x , t ) = ∑ n = 1 ∞ ( C n cos ⁡ n π l a t + D n sin ⁡ n π l a t ) sin ⁡ n π l x , u(x, t)=\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi}{l} a t+D_{n} \sin \frac{n \pi}{l} a t\right) \sin \frac{n \pi}{l} x, u(x,t)=n=1(Cncoslnπat+

  • 6
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值