感知机

感知机是1957年由Frank Rosenblatt提出的早期神经网络模型,它是一种简单的二元线性分类器,基于生物神经细胞的运作原理。感知机通过学习找到将输入数据线性划分的超平面,解决线性可分问题。尽管存在不能处理线性不可分问题的局限,感知机是支持向量机的基础,并启发了后来的多层神经网络发展。
摘要由CSDN通过智能技术生成

1简介

感知机(或称感知器,Perceptron)是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络

它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1。感知机是神经网络的雏形,同时也是支持向量机的基础,感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。

 

感知机是生物神经细胞的简单抽象。神经细胞结构大致可分为:树突、突触、细胞体及轴突。单个神经细胞可被视为一种只有两种状态的机器——激动时为‘是’,而未激动时为‘否’。神经细胞的状态取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。当信号量总和超过了某个阈值时,细胞体就会激动,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。为了模拟神经细胞行为,与之对应的感知机基础概念被提出,如权量(突触)、偏置(阈值)及激活函数(细胞体)。

 

 

图1 感知机算法

 

在人工神经网络领域中,感知机也被指为单层的人工神经网络,以区别于较复杂的多层感知机(Multilayer Perceptron)。作为一种线性分类器,(单层)感知机可说是最简单的前向人工神经网络形式。尽管结构简单,感知机能够学习并解决相当复杂的问题。感知机主要的本质缺陷是它不能处理线性不可分问题。

 

2历史

 

1943年,心理学家Warren McCulloch和数理逻辑学家Walter Pitts在合作的《A logical calculus of the ideas immanent in nervous activity》中提出并给出了人工神经网络的概念及人工神经元的数学模型,从而开创了人工神经网络研究的时代。

 

图2 Warren McCulloch和Walter Pitts以及他们提出的模型

 

1949年,心理学家Donald O. Hebb在《The Organization of Behavior》中描述了神经元学习法则。

 

图3 Hebb学习法则

 

1957年,美国神经学家Frank Rosenblatt在Cornell航空实验室中,他成功在IBM 704机上完成了感知机的仿真。两年后,他又成功实现了能够识别一些英文字母、基于感知机的神经计算机——Mark1,并于1960年6月23日,展示与众。

 

图4 Rosenblatt和Mark1 感知机

 

Rosenblatt,在Hebb学习法则的基础上,发展了一种迭代、试错、类似于人类学习过程的学习算法——感知机学习,该算法的初衷是为了‘教导’感知机

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值