- 博客(84)
- 收藏
- 关注

原创 车载毫米波雷达系列专题规划和文章目录
文章多了后为方便查阅,这里制定一个本专栏下的文章列表。该专栏为记录和探讨毫米波雷达的各方面内容,这些内容我现阶段大致分成了以下几个部分(后面可能会有所更改),在更新博文时我会一并将之纳入这里分好类的各个部分里面。
2023-02-24 15:45:43
4003
3
原创 读博生涯记录2 __ 2025.1.8 --- 关于博一上学期的一些经历和感受
时间过得好快,2024年8月底入学至今都快半年了。学校已经放寒假了,我也计划过多几天就回去,在这个太阳早已落山的午后,在这工位区的一隅,想着记录一下本学期我的一些经历和感受。
2025-01-08 20:34:12
678
4
原创 车载毫米波雷达目标分类问题探讨
本文对基于车载毫米波雷达的目标分类问题做了简单的探讨,阐述了我们可以做哪些分类,并从传统机器学习方法、深度学习方法实现目标分类两个方面展开论述(本文没有涉及实现目标分类的过程和细节,这部分内容本质上就是各类分类工具(算法)的具体使用,和机器学习更接近一些,读者可以从我的机器学习专栏: 机器学习_墨@#≯的博客-CSDN博客做更进一步的了解),进一步地,本文重点讨论了数据集这一基于车载雷达进行目标分类的难点。 此外,文中给出的几篇参考文献可以作为感兴趣的读者做更深入理解的参考资料。
2025-01-08 20:26:45
2050
原创 一些经济政治学类书籍推荐 --- 以及与之相关我的经历和理解
如果有人问我如何建立个人的经济学素养,我会把我上文描述的经历和那些书推荐给他,以及:去资本市场里(包括股市、债券、贵金属)亏点钱。
2024-12-22 20:19:49
1053
原创 典型降维算法的探讨与实践
本文对降维算法做了梳理,首先给出了降维处理的基本概念做了介绍,简要探讨了其基本原理、在机器学习中的定位(必要性)、优缺点、以及典型的降维算法有哪些。 随后,分别以线性降维方法中的PCA算法、非线性降维方法中的t-SNE算法为研究对象,阐述了其基本原理,给出了基于算法的降维实践结果。
2024-11-16 12:30:47
1218
原创 朴素贝叶斯算法探讨与实践
本文探讨朴素贝叶斯算法,具体地,首先对该算法相关的概念进行了介绍,随后给出了基于该算法进行分类实践的典型处理流程,最后结合理论对Iris数据集进行了分类实践,结果符合预期,验证了理论和代码的正确性。有关朴素贝叶斯算法还有很多的拓展:如半朴素贝叶斯、贝叶斯网络等等,感兴趣的读者可以自行查找资料做拓展研究。 本文的工作进一步丰富了专栏[2]:机器学习_墨@#≯的博客-CSDN博客的工具箱!为后续更复杂的深度学习等内容的理解和实践打下了基础。
2024-11-16 12:20:51
1016
原创 中心极限定理的理解与实践
本文探讨中心极限定理,具体地,先对中心极限定理的相关概念做了介绍,随后分别仿真实践 对所述中心极限定理的两层含义做了验证。 中心极限定理有着很广泛的应用场景,在雷达目标检测中,该定理是我们将噪声建模为高斯分布的理论依据,此外,在相干/非相干积累中我们也可以基于该定理对信号的pdf做一些辅助分析。
2024-11-13 17:42:27
1415
原创 概率密度与功率谱密度的理解与仿真
本文是想探讨概率密度和功率谱密度,首先对相关的概念做了梳理,随后进行了简单的仿真实践。 内容其实是很简单的(不过也有点绕,我也不太清楚我有没有说清楚),由此专门写一篇博文似乎有点滥竽充数之嫌。 这几个概念对于我们后续进行有关目标检测的各类探讨是很重要的!: 概率是我们用来评估雷达检测效果的唯一指标!而我们所倚赖的就是包括噪声、目标、杂波等的概率密度!
2024-11-13 17:33:56
1379
原创 传统机器学习总结
本文对传统机器学习相关内容做了梳理。包括:传统机器学习与现代机器学习的对比、传统机器学习中典型的模型和算法、传统机器学习的特点以及应用等。内容其实很简单(好像说了些什么,又好像什么都没说)。 对相关概念更深入的理解,特别是对与现代机器学习区别的理解可能需要从项目实践中获取。 本文的内容算是先占个坑,后续如果有更多概念知识、实践感触等我再做补充。
2024-10-30 15:43:26
2044
原创 KNN算法及基于该算法的回归和分类实践
本文围绕KNN算法展开,首先对其实现原理和一些实现细节做了论述,随后基于该算法分别进行了回归和分类实践,实践结果都符合预期。
2024-10-30 15:40:09
2216
1
原创 回归与分类中的过拟合问题探讨与解决
本文对回归(线性回归)和分类(逻辑回归、Softmax回归)中的过拟合问题进行了探讨和实践。首先对欠拟合、过拟合现象及其背后的原因做了解释;随后引入了正则化的概念,对正则化的原理进行了说明,并分别给出了:线性回归、逻辑回归以及Softmax回归三类模型下的正则化方法和权值更新公式;最后在前述理论的基础上,实践了线性回归和逻辑回归的正则化。
2024-10-29 09:48:16
1331
原创 Softmax回归 探讨与实践
本文对Softmax回归做了探讨和实践。首先对Softmax回归的概念做了基本介绍;随后从模型、优化准则、优化算法三个方面对Softmax实现多分类的原理和方法进行了阐述;最后,在前述理论的指导下,自编代码实践了对UCI里的Iris(鸢尾花卉)数据集的分类。
2024-10-29 09:16:28
1229
原创 高级优化算法之 fminunc函数 实践
本文对适用于机器学习里的回归、分类问题的高级优化算法做了简单的介绍,随后介绍了Matlab自带的非线性规划求解器:fminunc函数,并基于该函数对曲面最小值问题、直线回归问题进行了求解尝试。
2024-10-24 16:50:38
1429
原创 Logistic回归(分类)问题探讨与实践
本文对逻辑回归进行了探讨和实践。首先,结合在之前的博文中探讨过的线性回归和感知机,对逻辑回归的相关概念和理论进行了阐述;随后,在理论的指导下,自编代码实践了二分类和多分类,分类的结果都符合预期。(读者可以基于本文提供的代码做更多的尝试:比如改变学习率、实践一对一思路下的多分类、实践其它的数据集)
2024-10-24 16:31:03
1338
原创 回归问题探讨与实践
本文对机器学习的基本问题之一:回归问题,做了比较系统、详尽的理论论述和实践。在理论论述部分:在梳理回归问题有关概念时,着重论述了机器学习三要素:模型、学习准则(代价函数)、优化算法在回归问题中各自所扮演的角色,并进一步地给出了处理回归问题的典型流程。 在实践部分:分别构建了多项式模型和线性模型,并分别使用正规方程法和(批量)梯度下降法,对样本特征数为1和样本特征数为6的两份数据集进行了回归实践,回归的效果符合预期,验证了理论以及所编代码的正确性。
2024-10-18 16:42:26
1189
原创 书籍推荐 --- 历代经济变革得失
吴晓波的这本《历代经济变革得失》的取名,是对应了钱穆的《中国历代政治得失》,后者我大概是在本科时看过。 以史为鉴,可以知兴替。这两本书都可以多看几遍。
2024-10-18 16:02:34
406
原创 SVM及其实践2 --- 对典型数据集的多分类实践
本文承接本系列第一篇博文[1]的内容,基于SVM对两个比较典型且简单(不需要我们做太多的数据预处理工作)的公开数据集进行了分类实践。至少从流程上跑通了关于SVM实践的整个过程,分类的结果基本符合预期,不过还需要进一步优化超参数以提高模型的准确率。
2024-10-06 12:27:49
1221
4
原创 SVM及其实践1 --- 概念、理论以及二分类实践
本博文(本系列博文)的目的在于捋清楚有关SVM的各个概念及其相互之间的关系,梳理基于SVM的实践流程,此外本系列博文也对多个数据集进行了分类实践。
2024-10-06 12:23:04
1701
原创 感知机及其实践
本文围绕机器学习中基础的感知机模型展开,首先对其基本概念进行了介绍,随后给出了感知机的数学模型以及模型的求解方法(引入了损失函数,通过优化该函数来求得感知机的二分类模型),最后分别对其原始形式和对偶形式做了说明,并分别进行了仿真实践,实践的结果验证了理论以及所编代码的正确性。本文的工作很基础,不过为后续更复杂的多分类、SVM模型以及众多机器学习算法的认识和理解打了点基础。
2024-10-06 11:48:30
1425
原创 机器学习系列篇章0 --- 人工智能&机器学习相关概念梳理
本文作为机器学习专栏的第一篇文章,对 AI相关的概念以及机器学习的一些基础知识做了梳理和介绍
2024-10-06 11:07:04
1827
1
原创 关于我2020年7月至今(2024.9)的“炒股”经历和感受
本文作为所开设的兴趣专栏的第一篇文章,主要聊了聊我个人的炒股经历和感受,兴趣专栏的文章往后主要以一些对经济学类、文学类、法律类的书籍或课程的学习感受为主。再次声明:我远不是一个成熟的投资者,本文不构成任何入(股)市的引导或者买卖股票的建议。
2024-09-08 20:47:34
1115
1
原创 读博生涯记录1 __ 2024.9.8 --- 关于入学及感受
本文作为读博生涯记录专栏的第一篇文章,主要聊了聊入学这段时间的事宜和感受,本专栏的文章我会不定期更新。(不过在几个重要的节点都会做更新:综合考评、开题、中期、最终答辩、毕业,希望都能顺顺利利!)
2024-09-08 11:20:58
827
1
原创 写点感想5 --- 关于本人近期情况记录及后续规划
这里借这篇博文用来记录一下我在高校的工作感受以及后续的大体规划(特别是关于后续的博文)。
2024-08-21 21:47:07
1617
8
原创 (雷达数据处理中的)跟踪算法(4) --- 基于数据集的目标跟踪实践
本文针对数据集中的实测数据进行了跟踪实践,实践的结果基本符合预期,本系列博文对跟踪算法的探讨是很基础的,但本系列博文的内容止步于此,读者可以在本系列博文的基础上作更深入的研究。
2024-07-24 16:18:07
2178
1
原创 (雷达数据处理中的)跟踪算法(3) – 可用于目标跟踪实践的数据集介绍&解析
本文对一份典型的可用于目标跟踪实践的数据集进行了较为详尽的介绍。本文的工作主要是为后续基于数据集的目标跟踪实践打基础。当然,读者也可以基于本文所介绍的数据集做其它有意思的研究。
2024-07-24 16:10:03
2392
2
原创 (雷达数据处理中的)跟踪算法(2) --- 目标跟踪仿真实践
本文对跟踪算法做了仿真实践。首先对仿真方案做了介绍,随后在[1]的基础上对跟踪算法各模块的设计细节做了补充说明,在前述工作的基础上,仿真给出了一维匀加速运动、二维匀速运动两种目标运动模型下的目标跟踪结果,结果符合预期。本文的工作算法是跟踪算法的一个粗浅的仿真尝试,读者可以在本文的基础上设计更复杂的目标参数、场景参数等更深入地理解跟踪算法,并迭代优化该算法。
2024-07-24 16:03:18
3181
原创 (雷达数据处理中的)跟踪算法(1) --- 整体&目录
本系列博文对目标跟踪算法做了比较系统和详尽的介绍,以经典的卡尔曼滤波算法为例,分别从仿真和基于数据集的目标跟踪实现两个方面进行了实践。后续有机会我再扩展其它的滤波算法,希望该系列文章可以对读者有所帮助,欢迎批评指正!
2024-07-24 15:53:07
6579
2
原创 (毫米波雷达数据处理中的)聚类算法(3) – K-means算法及其实践
本文对K-means算法进行了实践。首先对K-means算法进行了简单的介绍,并给出了其典型的算法流程图。随后分别给出了基于K-means算法对Iris数据集、自己生成的二维平面点簇形数据集的聚类结果。
2024-05-15 08:54:12
1927
2
原创 (毫米波雷达数据处理中的)聚类算法(2) – DBSCAN算法及其实践
本文对DBSCAN算法进行了实践。首先对DBSCAN算法进行了介绍,给出了其典型的算法流程图、对其涉及的两个核心概念:邻域半径和最小样本数进行了介绍,并以车载雷达数据处理为例对这两概念做了更深入的探讨。随后比较详尽地介绍了Iris数据集,并分别给出了基于DBSCAN算法对Iris数据集、自己生成的二维平面点簇形数据集的聚类结果。
2024-05-15 08:46:26
2985
1
原创 (毫米波雷达数据处理中的)聚类算法(1) --- 概述
本文对聚类算法做了一些宽泛性/框架性的介绍。具体地,介绍了几种聚类算法、给出了一个可用作聚类算法实践的数据集、给出了一种自己生成二维平面内点簇的方法以及生成的结果、介绍了4种聚类结果的客观评价指标。本文的工作为后续基于具体的聚类算法的实践打下了基础。
2024-05-15 08:36:26
2887
2
原创 (车载)毫米波雷达信号处理中的恒虚警检测(CFAR)技术概述
本文结合诸多参考资料,梳理了一个关于CFAR算法的框架,系统且较为详实地给出了常见的几类CFAR算法,并以加特兰的CFAR处理方案为例,给出了现有的在车载雷达工程实践上较为先进的处理方式。希望本文的工作可以对研究雷达目标检测技术的科研或工程实践人员有所帮助。
2024-05-13 09:21:12
5249
原创 基于遗传/粒子群算法的多类型变量&多优化目标下的优化仿真实践--- 以波束形成优化为例
本博文对基于遗传算法和粒子群算法的多变量、多目标函数下的优化问题进行了探讨。以波束形成优化为例,使用这两种算法分别仿真了多变量(阵元幅值、相位、位置),单一目标优化(更高的峰值旁瓣比),多目标(设定波束指向&更高的峰值旁瓣比)优化四种情况,给出了仿真结果以及一些简单的探讨。 本博文的目的在于提供一个基础的、对于该问题的解决思路、框架和初步结果。更理想的优化结果,需要做更细节和更深入的工作。
2024-04-28 11:49:06
2156
原创 关于多脉冲(相干或非相干)积累问题探讨(2) --- 仿真与实测数据实践
本文从仿真以及实测两个方面探讨信号功率、噪声功率以及SNR随相干脉冲数量的变化关系。在一定的阈值下,信号功率的增长与积累数N成N^2倍的关系、噪声功率的增长与积累数N成N倍的关系、SNR的增长与积累数N成N倍的关系,不过,当积累数达到一定数量时,此时信号泄露到远端的能量会超过噪底,从而使得SNR不再会随着脉冲积累数的增加而继续增长。更细节的结论请参看2.4和3.4节。
2024-04-25 08:24:53
2177
2
原创 关于多脉冲(相干&非相干)积累问题探讨(1) --- 仿真和实测数据实践
本文围绕多脉冲积累下对SNR的影响这一问题展开,对多脉冲积累问题进行了系统介绍、详尽的仿真以及基于实测数据的分析讨论。在定性的理论分析、定量的仿真和实测数据结果支撑下,形成了以及验证了一些有益的定理和结论(见2.4以及3.2节)。本文的工作对多脉冲积累的应用(或各类相干/非相干积累应用)打下了基础。
2024-04-19 19:51:09
6530
4
原创 粒子群算法与遗传算法的对比&串行混合优化仿真 - 基于Rastrigin测试函数
本博文基于Rastrigin测试函数探讨粒子群算法和遗传算法的混合使用,分别给出了嵌入式混合以及串行混合下的算法流程,并对串行混合进行了仿真验证,仿真的结果验证了算法流程的可行性。 本文提供的仿真结果下,串行混合的效果不如粒子群或遗传算法单独使用时的效果,但优化混合算法参数以使得该算法的结果优于单独使用某种算法时的效果不是本文的核心目标(因为算法涉及的参数很多)。本博文的目的在于建立算法混合使用时的思路和框架。
2024-04-18 10:59:18
1578
原创 基于粒子群算法的波束形成优化 – 仿真实践
本文讨论基于粒子群算法的波束形成优化问题,具体地:本文针对峰值旁瓣比这一波束方向图中的核心参数之一,在控制单一变量的前提下,探讨如何基于该算法分别通过优化各阵元馈电幅度、馈电相位、阵元间相对位置关系的方法来达到压低波束旁瓣(提高峰值旁瓣比)的目的。仿真的结果验证了算法的可行性和正确性。
2024-04-17 17:47:16
1598
1
原创 粒子群算法及基于该算法的典型问题求解实践
本博文对粒子群算法做了系统性&细节性介绍:包括其相关概念、经典的处理流程等。并以一元函数寻优、二元函数寻优、01背包问题作为研究对象,探讨了如何使用粒子群算法解决这三个问题。
2024-04-17 17:00:28
3061
原创 关于柔性阵列(/三维阵列)波束形成的仿真实践以及稳健波束形成的思考(1)
本文探讨柔性阵列在位置畸变下的波束方向图问题。首先对柔性阵列、波束形成的概念进行了简要说明,并结合之前的积累[1]给出了一个三维阵列下阵列因子的通用表达式,在此基础上,分别基于线阵、面阵进行了仿真实践,探讨了在不同维度下位置畸变的影响。最后在第五章,简要探讨了如何对位置畸变后的阵列进行处理以消除/减弱畸变的影响。本章的内容主要旨在搭建一个阵列畸变研究的基本框架和基础,以期对后续更深入的研究有所帮助。
2024-03-28 17:06:18
2240
4
原创 关于克拉美罗下界(CRLB)-及不同DOA估计算法下的方差(性能)对比
本博文的内容相对简单,主要是试图理清楚关于参数估计、无偏估计、CRLB的由来和原理等概念,并以一维线阵为例,给出线阵DOA估计的CRLB、不同DOA估计算法的性能比较。后续有更多的细节和拓展我再不定期补充。
2024-03-25 18:19:38
10335
12
原创 基于遗传算法的波束形成优化-仿真实践
本文讨论基于遗传算法的波束形成优化问题,具体地:本文针对峰值旁瓣比这一波束方向图中的核心参数之一,在控制单一变量的前提下,探讨如何基于遗传算法分别通过优化各阵元馈电幅度、馈电相位、阵元间相对位置关系的方法来达到压低波束旁瓣(提高峰值旁瓣比)的目的。
2024-03-19 14:19:58
2034
10
(毫米波雷达)数据处理中的跟踪算法系列博文对应的代码和数据 内含本系列博文所涉及的仿真代码和数据
2024-07-24
基于遗传/粒子群算法的多类型变量&多优化目标下的优化仿真实践 - 以波束形成优化为例 博文对应的代码
2024-04-28
关于多脉冲相干&非相干积累问题的探讨-仿真和实测数据实践 博文对应的代码和数据
2024-04-19
粒子群算法与遗传算法的对比&串行混合优化仿真 - 基于Rastrigin测试函数 博文对应的代码
2024-04-18
关于柔性阵列(三维阵列)波束形成的仿真实践以及稳健波束形成的思考(1)博文对应的代码
2024-03-28
关于克拉美罗下界(CRLB)-及不同DOA估计算法下的方差(性能)对比博文对应的代码
2024-03-25
遗传算法及基于该算法的典型问题的求解实践博文对应的代码(Matlab)
2024-03-15
信号处理中的测量精度与频谱细化问题及其仿真-博文对应的代码
2024-01-31
基于Ti-AWR2944雷达开发板的DDM发射与处理实践博文相对应的数据和代码
2024-01-18
基于Ti-AWR2944雷达开发板的BPM发射与处理实践博文相对应的数据和代码
2024-01-16
毫米波雷达的系统设计细节(2)-关于目标RCS的问题博文相对应的代码和数据
2023-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人