描述
给定几个较小的数字和一个大数字,要求出这个大数字能否由这几个较小的数字组合而成,较小的数字可以重复使用,也可以不使用。如果可以组合,要输出有多少种组合方案;如果不能组合而成,输出0。
比如给定数字{1,3,5}和数字7,7可以由(1,3,3)(1,1,5)(1,1,1,1,3)和(1,1,1,1,1,1,1)组合而成,一共有4种组合方案。注意(1,3,3)和(3,3,1)是同一种方案。
再比如给定数字{2,3,4}和数字5,只有一种组合方案。
格式
输入格式
两行,第一行是3个小数字,这些数字按照从小到大排列,且不会重复,每个数字的值都在[1,m)之间
第二行是要组合的大数字m(m≤100)
输出格式
一个正整数,表示可以选择的组合方案。
样例
输入样例
1 3 5
10
输出样例
7
限制
时间限制:100 ms
内存限制:16384 KB
类似于硬币组合问题
#include <iostream>
#include <string.h>
using namespace std;
int main()
{
int a[4], n, dp[105];
a[0] = 0;
for (int i=1; i<=3; i++) {
scanf ("%d", &a[i]);
}
scanf("%d", &n);
memset(dp, 0, sizeof(dp));
dp[0]=1;
for(int i=1; i<=3; i++)
for(int j=a[i]; j<=n; j++)
dp[j] += dp[j - a[i]];
printf("%d\n",dp[n]);
return 0;
}