机器学习入门(01)— 感知机概念、实现、局限性以及多层感知机

1. 感知机概念

下图是一个接收两个输入信号的感知机的例子。

x1x2 是输入信号, y 是输出信号, w1w2 是权重( wweight 的首字母)。图中的 称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重( w1*x1w2*x2 )。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出 1。这也称为“神经元被激活” 。这里将这个界限值称为阈值,用符号 θ 表示。
感知机示例图
把上述内容用数学式来表示,见下公式

公式
感知机的多个输入信号都有各自固有的权重,这些权重发挥着控制各个信号的重要性的作用。也就是说,权重越大,对应该权重的信号的重要性就越高。

2. 感知机实现

2.1 简单实现

与门是有两个输入和一个输出的门电路。这种输入信号和输出信号的对应表称为“真值表”。如图所示,与门仅在两个输入均为 1 时输出1,其他时候则输出 0。

与门真值表

以逻辑与门为例来看看如何实现:

In [1]: def AND(x1, x2):
   ...:     w1, w2, theta = 0.5, 0.5, 0.7
   ...:     result = x1 * w1 + x2 * w2
   ...:     if result >= theta:
   ...:         return 1
   ...:     else:
   ...:         return 0
   ...:         

In [2]: 

按照同样的步骤,也可以实现与非门和或门,不过让我们来对它们的实现稍作修改。

2.2 导入权重和偏置

式(2.1)的 θ 换成 −b ,于是就可以用式(2.2)来表示感知机的行为。
导入权重
式(2.1)和式(2.2)虽然有一个符号不同,但表达的内容是完全相同的。此处,b 称为偏置,w1 和 w2 称为权重。如式(2.2)所示,感知机会计算输入信号和权重的乘积,然后加上偏置,如果这个值大于 0 则输出 1,否则输出 0。

使用 NumPy 实现 2.2 所描述的感知机,代码如下:

In [2]: import numpy as np

In [3]: x = np.array([0, 1])	# 输入

In [5]: w = np.array([0.5, 0.5])	# 权重

In [6]: b = -0.7	# 偏置

In [7]: w * x
Out[7]: array([0. , 0.5])

In [8]: np.sum(w*x)
Out[8]: 0.5

In [9]: np.sum(w*x) + b
Out[9]: -0.19999999999999996	# 大约为-0.2(由浮点小数造成的运算误差)

In [10]: 

NumPy 数组的乘法运算中,当两个数组的元素个数相同时,各个元素分别相乘,因此 w*x 的结果就是它们的各个元素分别相乘([0, 1] *[0.5, 0.5] => [0, 0.5])。之后, np.sum(w*x) 再计算相乘后的各个元素的总和。最后再把偏置加到这个加权总和上,就完成了式(2.2)的计算。

2.3 使用权重和偏置的实现

代码如下:

In [11]: def AND(x1, x2):
    ...:     x = np.array([x1, x2])
    ...:     w = np.array([0.5, 0.5])
    ...:     b = -0.7
    ...:     result = np.sum(w*x) + b
    ...:     if result <= 0:
    ...:         return 0
    ...:     else:
    ...:         return 1

In [12]: 

这里把 −θ 命名为偏置 b ,但是请注意,偏置和权重 w1w2 的作用是不一样的。

具体地说, w1w2 是控制输入信号的重要性的参数,而偏置是调整神经元被激活的容易程度(输出信号为 1 的程度)的参数。

例如:

  • b−0.1 ,则只要输入信号的加权总和超过 0.1 ,神经元就会被激活。
  • 但是如果 b−20.0,则输入信号的加权总和必须超过 20.0,神经元才会被激活。

像这样,偏置的值决定了神经元被激活的容易程度。另外,这里我们将 w1w2 称为权重,将 b 称为偏置,但是根据上下文,有时也会将 bw1w2 这些参数统称为权重。

3. 感知机局限性

感知机的局限性就在于它只能表示由一条直线分割的空间。下图这样弯曲的曲线无法用感知机表示。另外,由下图这样的曲线分割而成的空间称为非线性空间,由直线分割而成的空间称为线性空间
感知机局限

4. 多层感知机

与门、或门是单层感知机,而异或门是 2 层感知机。叠加了多层的感知机也称为多层感知机( multi-layered perceptron )。
感知机表示异或门
图2-13中的感知机总共由 3 层构成,但是因为拥有权重的层实质上只有 2 层(第 0 层和第 1 层之间,第 1 层和第 2 层之间),所以称为 “2 层感知机”。不过,有的文献认为图 2-13 的感知机是由 3 层构成的,因而将其称为“3 层感知机”。

在图2-13所示的 2 层感知机中,先在第 0 层和第 1 层的神经元之间进行信号的传送和接收,然后在第 1 层和第 2 层之间进行信号的传送和接收,具体如下所示。

  • 第 0 层的两个神经元接收输入信号,并将信号发送至第 1 层的神经元。
  • 第 1 层的神经元将信号发送至第 2 层的神经元,第 2 层的神经元输出 y。

这种 2 层感知机的运行过程可以比作流水线的组装作业。第 1 段(第 1 层)的工人对传送过来的零件进行加工,完成后再传送给第 2 段(第 2 层)的工人。第 2 层的工人对第 1 层的工人传过来的零件进行加工,完成这个零件后出货(输出)。

通过这样的结构( 2 层结构),感知机得以实现异或门。这可以解释为 “单层感知机无法表示的东西,通过增加一层就可以解决”。也就是说,通过叠加层(加深层),感知机能进行更加灵活的表示。

5. 总结

• 感知机是具有输入和输出的算法。给定一个输入后,将输出一个既定的值;
• 感知机将权重和偏置设定为参数;
• 使用感知机可以表示与门和或门等逻辑电路;
• 异或门无法通过单层感知机来表示;
• 使用 2 层感知机可以表示异或门;
• 单层感知机只能表示线性空间,而多层感知机可以表示非线性空间;
• 多层感知机(在理论上)可以表示计算机;

参考:《深度学习入门:基于Python的理论与实现》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wohu007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值