描述
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
-
输入
-
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
输出
- For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case. 样例输入
-
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
样例输出
-
Case 1: 2 Case 2: 1
-
贪心算法,先将所有的点转化成区间, 对区间左点排序,比较。。。 代码: #include<stdio.h> #include<math.h> #include<algorithm> using namespace std; struct readar{ double left; double right; }s[1500]; bool cmp(readar x,readar y){ if(x.right<y.right) return true; return false; } int main(){ int n; double a,r,b; int i,j,k; double num,t; int cas=1; while(~scanf("%d%lf",&n,&r),n!=0&&r!=0){ int flag=0; for(i=0;i<n;i++){ scanf("%lf%lf",&a,&b); if(r<b){ flag=1; continue; } num=sqrt(r*r-b*b); s[i].left=a-num; s[i].right=a+num; } sort(s,s+n,cmp); int ans=1; t=s[0].right; for(i=1;i<n;i++){ if(s[i].left>t) { ans++; t=s[i].right; } } if(flag) printf("Case %d: -1\n",cas++); else printf("Case %d: %d\n",cas++,ans); } return 0; }