对数转换同底公式证明

背景

看逻辑回归函数的发展过程,追溯到了指数函数,而指数函数最初是研究人口增长和时间关系了,里面提到增长率,而增长率又用微分函数来表示。但是我只记得导数也是代表斜率的,导数和微分的区别是什么呢?太久远了。

指数函数求导

直接找到近20年前的《高等数学》看看导数的定义,看到求指数函数的导数问题:
求函数 f ( x ) = a x ( a > 0 , a ≠ 1 ) f(x)=a^{x} (a>0,a\ne1) f(x)=axa>0,a=1) 的导数。

根据导数定义:
f ′ ( x ) = lim ⁡ x → 0 f ( x + h ) − f ( x ) h = lim ⁡ x → 0 a ( x + h ) − a x h = lim ⁡ x → 0 a x a h − a x h = a x lim ⁡ x → 0 a h − 1 h = a x l n a \begin{align} {f}'(x)&=\lim_{x \to 0}\frac{f(x+h)-f(x)}{h}\newline&=\lim_{x \to 0}\frac{a^{(x+h)}-a^{x}}{h}\newline&=\lim_{x \to 0}\frac{a^{x}a^{h}-a^{x}}{h}\newline&=a^x\lim_{x \to 0}\frac{a^h-1}{h} \newline &=a^xlna \end{align} f(x)=x0limhf(x+h)f(x)=x0limha(x+h)ax=x0limhaxahax=axx0limhah1=axlna

第(4)步计算导数的过程,令 a h − 1 = t a^h-1=t ah1=t,则 h = l o g a ( t + 1 ) h=log_a(t+1) h=loga(t+1)

h → 0 h\to0 h0 时, t = a 0 − 1 = 0 ,即 t → 0 t=a^0-1=0,即t\to0 t=a01=0,即t0,将对 x 求极限等价转换对 t 求极限:
lim ⁡ x → 0 a h − 1 h = lim ⁡ t → 0 t l o g a ( t + 1 ) = lim ⁡ t → 0 1 1 t l o g a ( t + 1 ) = lim ⁡ t → 0 1 l o g a ( t + 1 ) 1 t = 1 l o g a e = l n a \begin{align}\lim_{x \to 0}\frac{a^h-1}{h}&=\lim_{t \to 0} \frac{t}{log_a(t+1)} \newline &=\lim_{t \to 0}\frac{1}{\frac{1}{t}log_a(t+1)}\newline &=\lim_{t \to 0}\frac{1}{log_a(t+1)^{\frac{1}{t}}}\newline &=\frac{1}{log_ae}\newline &=lna \end{align} x0limhah1=t0limloga(t+1)t=t0limt1loga(t+1)1=t0limloga(t+1)t11=logae1=lna

第 6 步到第 7 步变换是通过对分子分母同时除以 t 得到的,第 7 步到第 8 步用到了对数的特征 l o g a M N = N l o g a M log_aM^N=Nlog_aM logaMN=NlogaM

第 8-10 步推导过程用到了自然数 e 的定义:
e = lim ⁡ n → ∞ ( 1 + 1 n ) n e=\lim_{n \to \infty} (1+\frac{1}{n})^n e=nlim(1+n1)n

将公式 (8) 和自然数 e 的公式对比,令 n = 1 t n=\frac{1}{t} n=t1,因此公式(8) 的分母中的真数就为自然数 e,得到公式 (9) 了。

利用对数换底公式将公式(9)的分母换成同底 e。 l o g a e = l o g e e l o g e a = 1 l n a log_ae=\frac{log_ee}{log_ea}=\frac{1}{lna} logae=logealogee=lna1。代入公式 (9)就得到公式 (10)。

为什么指数函数求导后最终有无理数的对数 l n a lna lna 的部分呢?这里用到了对数换底公式,将 l o g a e log_ae logae 换成自然对数 l n ln ln。为什么可以换底呢?

对数换同底证明方法一

对数有换底公式:
l o g a b = l o g c b l o g c a ,取 c = e ,则 l o g a b = l n b l n a log_ab=\frac{log_cb}{log_ca},取 \quad c= e,则\quad log_ab =\frac{lnb}{lna} logab=logcalogcb,取c=e,则logab=lnalnb

这个换底公式怎么证明的呢?刷了两遍一个证明视频,自己理了一遍。

1. l o g a b = x 2. l o g c b = y 3. l o g c a = z \begin{align} 1.\qquad log_ab=x \newline 2.\qquad log_cb=y\newline 3.\qquad log_ca=z \end{align} 1.logab=x2.logcb=y3.logca=z
换底公式就是要证明: y = x z y=xz y=xz,使用对数和指数的互逆性质和指数运算规则进行推导。

4. a x = b 5. c y = b 6. c z = a 7. a x = c y 4.\qquad a^x=b \newline 5.\qquad c^y=b\newline 6.\qquad c^z=a \newline7.\qquad a^x=c^y 4.ax=b5.cy=b6.cz=a7.ax=cy

由公式 4 和公式 5 得到等式 7 ,再对等式 6 左右两侧都进行 y y y 次方:
9. ( c z ) y = a y 9.\qquad(c^z)^y=a^y \newline 9.(cz)y=ay

根据指数乘法特点 ( c z ) y = ( c y ) z (c^z)^y=(c^y)^z (cz)y=(cy)z,替换公式9 的到:
10. ( c y ) z = a y 10.\qquad(c^y)^z=a^y 10.(cy)z=ay

用公式 7 替换公式 10 的到新的等式:
( a x ) z = a y (a^x)^z=a^y (ax)z=ay
( a x ) z = a x z = a y (a^x)^z=a^{xz}=a^y (ax)z=axz=ay,因此得到 y = x z y=xz y=xz

对数换同底证明方法二

根据文章发布后底部的推荐算法,看到了一个更完整的对数函数的概述《对数换底公式及推导证明》,还有一种更简单的推导方法,直接从定义和对数的特性进行推导。

启示录

发现捣鼓一下数学公式,还挺有意思的!甚至萌生了买一套高中数学书的想法,提前温故高中知识,为将来孩子上高中做准备……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值