背景
看逻辑回归函数的发展过程,追溯到了指数函数,而指数函数最初是研究人口增长和时间关系了,里面提到增长率,而增长率又用微分函数来表示。但是我只记得导数也是代表斜率的,导数和微分的区别是什么呢?太久远了。
指数函数求导
直接找到近20年前的《高等数学》看看导数的定义,看到求指数函数的导数问题:
求函数
f
(
x
)
=
a
x
(
a
>
0
,
a
≠
1
)
f(x)=a^{x} (a>0,a\ne1)
f(x)=ax(a>0,a=1) 的导数。
根据导数定义:
f
′
(
x
)
=
lim
x
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
x
→
0
a
(
x
+
h
)
−
a
x
h
=
lim
x
→
0
a
x
a
h
−
a
x
h
=
a
x
lim
x
→
0
a
h
−
1
h
=
a
x
l
n
a
\begin{align} {f}'(x)&=\lim_{x \to 0}\frac{f(x+h)-f(x)}{h}\newline&=\lim_{x \to 0}\frac{a^{(x+h)}-a^{x}}{h}\newline&=\lim_{x \to 0}\frac{a^{x}a^{h}-a^{x}}{h}\newline&=a^x\lim_{x \to 0}\frac{a^h-1}{h} \newline &=a^xlna \end{align}
f′(x)=x→0limhf(x+h)−f(x)=x→0limha(x+h)−ax=x→0limhaxah−ax=axx→0limhah−1=axlna
第(4)步计算导数的过程,令 a h − 1 = t a^h-1=t ah−1=t,则 h = l o g a ( t + 1 ) h=log_a(t+1) h=loga(t+1)。
当
h
→
0
h\to0
h→0 时,
t
=
a
0
−
1
=
0
,即
t
→
0
t=a^0-1=0,即t\to0
t=a0−1=0,即t→0,将对 x 求极限等价转换对 t 求极限:
lim
x
→
0
a
h
−
1
h
=
lim
t
→
0
t
l
o
g
a
(
t
+
1
)
=
lim
t
→
0
1
1
t
l
o
g
a
(
t
+
1
)
=
lim
t
→
0
1
l
o
g
a
(
t
+
1
)
1
t
=
1
l
o
g
a
e
=
l
n
a
\begin{align}\lim_{x \to 0}\frac{a^h-1}{h}&=\lim_{t \to 0} \frac{t}{log_a(t+1)} \newline &=\lim_{t \to 0}\frac{1}{\frac{1}{t}log_a(t+1)}\newline &=\lim_{t \to 0}\frac{1}{log_a(t+1)^{\frac{1}{t}}}\newline &=\frac{1}{log_ae}\newline &=lna \end{align}
x→0limhah−1=t→0limloga(t+1)t=t→0limt1loga(t+1)1=t→0limloga(t+1)t11=logae1=lna
第 6 步到第 7 步变换是通过对分子分母同时除以 t 得到的,第 7 步到第 8 步用到了对数的特征 l o g a M N = N l o g a M log_aM^N=Nlog_aM logaMN=NlogaM。
第 8-10 步推导过程用到了自然数 e 的定义:
e
=
lim
n
→
∞
(
1
+
1
n
)
n
e=\lim_{n \to \infty} (1+\frac{1}{n})^n
e=n→∞lim(1+n1)n
将公式 (8) 和自然数 e 的公式对比,令 n = 1 t n=\frac{1}{t} n=t1,因此公式(8) 的分母中的真数就为自然数 e,得到公式 (9) 了。
利用对数换底公式将公式(9)的分母换成同底 e。 l o g a e = l o g e e l o g e a = 1 l n a log_ae=\frac{log_ee}{log_ea}=\frac{1}{lna} logae=logealogee=lna1。代入公式 (9)就得到公式 (10)。
为什么指数函数求导后最终有无理数的对数 l n a lna lna 的部分呢?这里用到了对数换底公式,将 l o g a e log_ae logae 换成自然对数 l n ln ln。为什么可以换底呢?
对数换同底证明方法一
对数有换底公式:
l
o
g
a
b
=
l
o
g
c
b
l
o
g
c
a
,取
c
=
e
,则
l
o
g
a
b
=
l
n
b
l
n
a
log_ab=\frac{log_cb}{log_ca},取 \quad c= e,则\quad log_ab =\frac{lnb}{lna}
logab=logcalogcb,取c=e,则logab=lnalnb
这个换底公式怎么证明的呢?刷了两遍一个证明视频,自己理了一遍。
1.
l
o
g
a
b
=
x
2.
l
o
g
c
b
=
y
3.
l
o
g
c
a
=
z
\begin{align} 1.\qquad log_ab=x \newline 2.\qquad log_cb=y\newline 3.\qquad log_ca=z \end{align}
1.logab=x2.logcb=y3.logca=z
换底公式就是要证明:
y
=
x
z
y=xz
y=xz,使用对数和指数的互逆性质和指数运算规则进行推导。
4. a x = b 5. c y = b 6. c z = a 7. a x = c y 4.\qquad a^x=b \newline 5.\qquad c^y=b\newline 6.\qquad c^z=a \newline7.\qquad a^x=c^y 4.ax=b5.cy=b6.cz=a7.ax=cy
由公式 4 和公式 5 得到等式 7 ,再对等式 6 左右两侧都进行
y
y
y 次方:
9.
(
c
z
)
y
=
a
y
9.\qquad(c^z)^y=a^y \newline
9.(cz)y=ay
根据指数乘法特点
(
c
z
)
y
=
(
c
y
)
z
(c^z)^y=(c^y)^z
(cz)y=(cy)z,替换公式9 的到:
10.
(
c
y
)
z
=
a
y
10.\qquad(c^y)^z=a^y
10.(cy)z=ay
用公式 7 替换公式 10 的到新的等式:
(
a
x
)
z
=
a
y
(a^x)^z=a^y
(ax)z=ay
而
(
a
x
)
z
=
a
x
z
=
a
y
(a^x)^z=a^{xz}=a^y
(ax)z=axz=ay,因此得到
y
=
x
z
y=xz
y=xz。
对数换同底证明方法二
根据文章发布后底部的推荐算法,看到了一个更完整的对数函数的概述《对数换底公式及推导证明》,还有一种更简单的推导方法,直接从定义和对数的特性进行推导。
启示录
发现捣鼓一下数学公式,还挺有意思的!甚至萌生了买一套高中数学书的想法,提前温故高中知识,为将来孩子上高中做准备……