逻辑回归(中):数学公式学习笔记 LaTeX 版

背景

闲来无事翻了一下之前买的一个机器学习课程及之前记录的网络笔记,发现遇到公式都是截图,甚至是在纸上用笔推导的。重新整理一遍之前逻辑回归函数的学习笔记,主要是为了玩一下 LaTex 语法,写公式挺有意思的。

整理之前三篇笔记汇总如下:

  1. 逻辑回归(上):函数求导过程自推 LaTex 语法
  2. 逻辑回归(中):数学公式学习笔记 LaTeX 版
  3. 逻辑回归(下): Sigmoid 函数的发展历史

逻辑回归数学函数

回顾一下逻辑回归函数:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1

该函数在学术上被称为 Sigmoid 函数,它的函数曲线图如下:
在这里插入图片描述

逻辑回归和线性回归的关系

逻辑回归和线性回归的关系:对逻辑回归的概率比取自然对数,则得到的是一个线性函数,推导过程如下。

首先,看逻辑回归的函数定义:

g ( z ) = 1 1 + e − z (公式 1 ) g(z)=\frac{1}{1+e^{-z}} (公式1) g(z)=1+ez1(公式1

对于某一个变量 z i z_i zi,可以按照该公式计算出对应的值 g ( z i ) g(z_i) g(zi) 值,要么是 0,要么是1。

其次,变量 z i z_i zi假定它满足线性回归模型,且是具有 N 个独立变量 X i = ( X 1 , X 2... X n ) X_i=(X_1,X2...X_n) Xi=(X1,X2...Xn) 的线性模型。表示为:
z i = w 0 x 0 + w 1 x 1 + . . . + w i x i z_i=w_0x_0+w_1x_1+...+w_ix_i zi=w0x0+w1x1+...+wixi

向量 W = ( w 0 , w 1 , . . . , w n ) W=(w_0,w_1,...,w_n) W=w0,w1,...,wn 代表该线性模型的参数列表。

那么变量 z i z_i zi 就表示为两个向量的乘法,即 W 向量的转置和 X 向量的乘法:
z i = W T X (公式 2 ) z_i=W^TX (公式2) zi=WTX(公式2

第三步,将公式2 代入公式1,则逻辑回归函数就成了:
g ( z i ) = 1 1 + e − W T X (公式 3 ) g(z_i)=\frac{1}{1+e^{-W^TX}} (公式3) g(zi)=1+eWTX1(公式3

第四步,按公式3,计算概率比,因为逻辑回归总体值不超过1,所以某个概率 y 和它的反面 1 − y 1-y 1y 的概率比计算如下:
y 1 − y = 1 1 + e − W T X 1 − 1 1 + e − W T X (公式 4 ) \frac{y}{1-y} = \frac{\frac{1}{1+e^{-W^TX}}}{1-\frac{1}{1+e^{-W^TX}}}(公式4) 1yy=11+eWTX11+eWTX1(公式4

令: A = 1 + e − W T X A=1+e^{-W^TX} A=1+eWTX (公式5)。

A A A 简化公式4:
y 1 − y = 1 A 1 − 1 A = 1 A 1 A ( A − 1 ) = 1 A − 1 (公式 6 ) \frac{y}{1-y} =\frac{\frac{1}{A}}{1-\frac{1}{A}}=\frac{\frac{1}{A}}{\frac{1}{A}(A-1)}=\frac{1}{A-1}(公式6) 1yy=1A1A1=A1(A1)A1=A11(公式6

还原 A 将公式5代入公式6得到概率比:
y 1 − y = 1 1 + e − W T X − 1 = 1 e − W T X = ( e − W T X ) − 1 = e W T X (公式 7 ) \frac{y}{1-y}=\frac{1}{1+e^{-W^{T}X}-1}=\frac{1}{e^{-W^{T}X}}=(e^{-W^{T}X})^{-1}=e^{W^{T}X} (公式7) 1yy=1+eWTX11=eWTX1=(eWTX)1=eWTX(公式7
对该概率比取对数:
l n y 1 − y = l n ( e W T X ) = W T X ln\frac{y}{1-y}=ln(e^{W^{T}X})=W^{T}X ln1yy=ln(eWTX)=WTX

总结:在统计学上, P 1 − P \frac{P}{1-P} 1PP 被称为发生比,即事件发生和不发生的比率,从上面推导的结果可以知道,逻辑回归中的回归是建立在假设事件发生比的对数是线性模型的基础上的。

逻辑回归函数的含义

逻辑回归模型使用了逻辑分布函数,在进行分类时,假设两种满足线性回归模型的不同的分类相互竞争,其中某一方胜出的概率分布在数学上近似为 Sigmoid 曲线,
即 Sigmoid 函数描述了某一方竞争胜出的概率。

以购物为例,假设有特征向量 X i = ( X 1 , X 2... X n ) X_i=(X_1,X2...X_n) Xi=(X1,X2...Xn) ,它们决定了某个顾客 i i i 的购物决定。顾客 i i i 的购物行为记做 y i y_i yi,购物行为分为两种买或者不买。

y i = 1 y_i=1 yi=1,表示顾客 i i i 购买; y i = 0 y_i=0 yi=0 ,则表示顾客 i i i 没有购买。

使用 Sigmoid 的曲线对顾客 i i i 的购物行为【即 y i = 1 y_i=1 yi=1】的概率,表达式为:
P ( y i = 1 ) = 1 1 + e − W i T X i P(y_i=1)=\frac{1}{1+e^{-W_i^{T}X_i}} P(yi=1)=1+eWiTXi1

其中, X i = ( x 1 , x 2 . . . x i . . . x n ) X_i=(x_1,x_2...x_i...x_n) Xi=(x1,x2...xi...xn) 表示顾客 i i i 的特征, W i = ( w 1 , w 2 . . . w i . . . w n ) W_i=(w_1,w_2...w_i...w_n) Wi=(w1,w2...wi...wn) 为模型参数【即事件发生比的对数所对应的线性模型】。

推广到一组顾客,则所有的顾客的购买行为用矩阵表示,就可以写为:
P ( Y = 1 ) = 1 1 + e − W T X P(Y=1)=\frac{1}{1+e^{-W^{T}X}} P(Y=1)=1+eWTX1

<think>好的,我需要帮助用户查找二元逻辑回归数学公式。首先,我得回忆一下逻辑回归的基本概念。二元逻辑回归用于二分类问题,预测概率属于某一类的概率,通常用sigmoid函数将线性组合映射到0和1之间。 用户提到了需要数学公式,所以我应该先写出线性部分,然后是sigmoid函数。线性部分通常是$\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$,然后通过逻辑函数转换,即$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + ... + \beta_p x_p)}}$。这部分需要符合格式要求,使用行内数学表达式$...$。 接下来,用户提供的引用中有几个相关的。引用[1]提到逻辑回归的损失函数,引用[5]也讨论了损失函数及其导数。这里可能需要解释损失函数,即对数似然函数。损失函数通常是对数损失,公式是$L(\beta) = -\sum [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$,需要确认是否正确,并正确引用来源。 另外,引用[4]提到完全分离和拟完全分离的情况,但用户的问题是关于公式,这部分可能暂时不需要,除非在解释参数估计时涉及,但暂时先不引入,保持回答简洁。 需要确保数学公式LaTeX语法正确,行内公式用$...$,独立公式用$$...$$。例如,sigmoid函数作为独立公式可能需要单独成段,但用户的问题可能只需要行内表达式。根据示例中的情况,独立公式如损失函数可能需要用$$...$$,但要看是否单独成段。 然后,生成相关问题。根据逻辑回归的公式,可能的问题包括sigmoid函数的作用、参数估计方法(如最大似然估计)、损失函数的推导,应用场景等。需要确保问题相关且基于内容。 最后,检查引用是否正确添加。例如,在提到损失函数时,引用[1]和[5],因为这两个引用都提到了损失函数的内容。参数估计部分可能引用[3],因为它提到了统计学习中的例子。 现在整理回答结构:先介绍二元逻辑回归模型,给出概率公式,然后线性部分,接着sigmoid函数,再损失函数,并引用相关文献。最后生成相关问题。</think>二元逻辑回归(Binary Logistic Regression)的数学公式如下: 1. **模型表达式** 对于输入变量 $X = (x_1, x_2, ..., x_p)$,逻辑回归通过线性组合 $\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$ 预测事件发生的概率 $P(Y=1|X)$。其核心公式使用 **Sigmoid函数**(或称逻辑函数)将线性结果映射到 $[0,1]$ 区间: $$P(Y=1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p)}}$$ 其中 $\beta_0, \beta_1, ..., \beta_p$ 是待估参数[^1][^5]。 2. **对数几率(Logit)形式** 若将概率 $P(Y=1|X)$ 转换为对数几率,可得线性表达式: $$\log\left(\frac{P(Y=1|X)}{1 - P(Y=1|X)}\right) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$ 这一形式直观反映了自变量对事件发生几率的影响[^3]。 3. **损失函数** 参数估计通常通过最大化对数似然函数实现,其损失函数为: $$L(\beta) = -\sum_{i=1}^n \left[ y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right]$$ 其中 $p_i = P(Y=1|X_i)$,$y_i$ 是实际标签(0或1)[^5]。 4. **参数估计** 使用梯度下降或牛顿法等优化算法求解 $\beta$ 的最优值,以最小化损失函数[^3]。 --- **相关问题** 1. 逻辑回归中 Sigmoid 函数的作用是什么? 2. 如何解释逻辑回归的系数 $\beta_j$? 3. 逻辑回归的损失函数为什么使用对数损失而非均方误差? 4. 逻辑回归在处理完全分离数据时需要注意什么[^4]? 5. 逻辑回归与线性回归在假设条件上有何区别?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值