引言
在数据处理输入输出时,极有可能遇到数据读入空值(极大、极小)、运算中分母为0或0.0,对0取对数等操作,这将产生nan或inf的产生。这篇博文旨在分析C/C++产生nan和inf的操作及判断是否有nan或inf产生。
NAN的产生原因
nan: not a number,表示“无效数字”。
- 对负数开方,如: −1.0‾‾‾‾‾√ ;
- 对负数求对数,如: log(−1.0) ;
- 0.00.0 ;
- 0.0*inf;
- infinf ;
- inf-inf这些操作都会得到nan。
( 00 会产生操作异常; 0.00.0 不会产生操作异常,而是会得到nan);
注意:nan是无序的(unordered),无法对其进行逻辑运算。它不大于、小于或等于任何数(包括它自己),将<,>,<=,和>=作用于nan产生一个exception。得到nan时就查看是否有非法操作,如果表达式中含有nan,那么表达式的结果为nan。
INF的产生原因
INF:infinite,表示“无穷大”。
超出浮点数的表示范围(溢出,即阶码部分超过其能表示的最大值)。
- 1.00.0 等于inf;
- −1.00.0 等于-inf;
- 0.0+inf=inf;
- log(0);
注意:+inf大于任何数(除了它自己和nan),-inf小于任何数(除了它自己和nan),得到inf时就查看是否有溢出或者除以0。inf在C语言表达式中就表示数学里无限的概念,如1.0/inf等于0.0,并可以与其他浮点数进行比较的(可以参与<=、>+、==、!=等运算)。
nan和inf的判断
下面几个宏即包含在math.h头文件,可用于判断一个表达式的结果是否为inf、nan或其他。使用时包括 include<math.h> 。
int isfinite(x);
int isnormal(x);
int isnan(x);
int isinf(x);
打开math.h可以看到定义:
#define isnormal(x) \
( sizeof(x) == sizeof(float) ? __inline_isnormalf((float)(x)) \
: sizeof(x) == sizeof(double) ? __inline_isnormald((double)(x)) \
: __inline_isnormall((long double)(x)))
#define isfinite(x) \
( sizeof(x) == sizeof(float) ? __inline_isfinitef((float)(x)) \
: sizeof(x) == sizeof(double) ? __inline_isfinited((double)(x)) \
: __inline_isfinitel((long double)(x)))
#define isinf(x) \
( sizeof(x) == sizeof(float) ? __inline_isinff((float)(x)) \
: sizeof(x) == sizeof(double) ? __inline_isinfd((double)(x)) \
: __inline_isinfl((long double)(x)))
#define isnan(x) \
( sizeof(x) == sizeof(float) ? __inline_isnanf((float)(x)) \
: sizeof(x) == sizeof(double) ? __inline_isnand((double)(x)) \
: __inline_isnanl((long double)(x)))
使用方法,及结果:
- int isfinite(x) ,判断x是否有限,是返回1,其它返回0;
- int isnormal(x),判断x是否为一个数(非inf或nan),是返回1,其它返回0;
- int isnan(x),当x时nan返回1,其它返回0;
- int isinf(x) ,当x是正无穷是返回1,当x是负无穷时返回-1,其它返回0。有些编译器不区分。
测试
产生nan或inf的操作,使用库函数(宏)判断
#include <iostream>
#include <math.h>
using namespace std;
int main(int argc, char *argv[])
{
//nan
cout<<"nan: "<<sqrt(-1)<<endl;
cout<<"nan: "<<log(-1.0)<<endl;
cout<<"nan: "<<0.0/0.0<<endl;
cout<<"nan: "<<0.0*sqrt(-1)<<endl;
cout<<"nan: "<<sqrt(-1)/sqrt(-1)<<endl;
cout<<"nan: "<<sqrt(-1)-sqrt(-1)<<endl;
//inf
cout<<"inf: "<<1/0.0<<endl;
cout<<"-inf: "<<-1/0.0<<endl;
cout<<"inf: "<<0.0+1/0.0<<endl;
cout<<"-inf: "<<log(0)<<endl;
cout<<"isfinite: 0"<<isfinite(0.0/0.0)<<endl;
cout<<"isfinite: 0"<<isfinite(1/0.0)<<endl;
cout<<"isfinite: 1"<<isfinite(1.1)<<endl;
cout<<"isnormal: 0"<<isnormal(0.0/0.0)<<endl;
cout<<"isnormal: 0"<<isnormal(1/0.0)<<endl;
cout<<"isnormal: 1"<<isnormal(1.1)<<endl;
cout<<"isnan: 1"<<isnan(0.0/0.0)<<endl;
cout<<"isnan: 0"<<isnan(1/0.0)<<endl;
cout<<"isnan: 0"<<isnan(1.1)<<endl;
cout<<"isinf: 0"<<isinf(0.0/0.0)<<endl;
cout<<"isinf: 1"<<isinf(1/0.0)<<endl;
cout<<"isinf: 0"<<isinf(1.1)<<endl;
return 0;
}
参考
http://www.gnu.org/software/libc/manual/html_node/Infinity-and-NaN.html
http://www.cnblogs.com/dosrun/p/3908617.html