PyTorch中使用TensorBoard可视化模型、数据和训练过程

在 60 分钟闪电战中,我们向您展示了如何加载数据,通过我们定义为 nn.Module 子类的模型提供数据,在训练数据上训练这个模型,并在测试数据上测试它。 为了了解发生了什么,我们在模型训练时打印出一些统计数据,以了解训练是否在进行。 但是,我们可以做得比这更好:PyTorch 与 TensorBoard 集成,这是一种用于可视化神经网络训练运行结果的工具。 本教程使用 Fashion-MNIST 数据集说明了它的一些功能,该数据集可以使用 torchvision.datasets 读入 PyTorch。

在本教程中,我们将学习如何:

  1. 读入数据并进行适当的转换(与之前的教程几乎相同)。
  2. 设置 TensorBoard。
  3. 写入 TensorBoard。
  4. 使用 TensorBoard 检查模型架构。
  5. 使用 TensorBoard 创建我们在上一教程中创建的可视化的交互式版本,代码更少

具体来说,在第 5 点,我们将看到:

  1. 检查训练数据的几种方法
  2. 如何在训练时跟踪我们的模型的性能
  3. 训练后如何评估我们的模型的性能。

我们将从与 CIFAR-10 教程中类似的样板代码开始:

# imports
import matplotlib.pyplot as plt
import numpy as np

import torch
import torchvision
import torchvision.transforms as transforms

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# transforms
transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))])

# datasets
trainset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=True,
    transform=transform)
testset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=False,
    transform=transform)

# dataloaders
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                        shuffle=True, num_workers=2)


testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                        shuffle=False, num_workers=2)

# constant for classes
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')

# helper function to show an image
# (used in the `plot_classes_preds` function below)
def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

我们将从该教程中定义一个类似的模型架构,只小修改以说明图像现在是一个通道而不是三个通道和 28x28 而不是 32x32:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

我们将定义与之前相同的optimizercriterion

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

1. TensorBoard 设置

现在我们将设置 TensorBoard,从 torch.utils 导入 tensorboard 并定义一个SummaryWriter,我们将信息写入 TensorBoard 的关键对象。


from torch.utils.tensorboard import SummaryWriter

# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/fashion_mnist_experiment_1')

请注意,这一行单独创建了一个“runs/fashion_mnist_experiment_1”文件夹。

2. 写入 TensorBoard

现在让我们向 TensorBoard 写入一个图像——特别是一个网格——使用make_grid

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# create grid of images
img_grid = torchvision.utils.make_grid(images)

# show images
matplotlib_imshow(img_grid, one_channel=True)

# write to tensorboard
writer.add_image('four_fashion_mnist_images', img_grid)

现在运行

tensorboard --logdir=runs

从命令行,然后导航到 http://localhost:6006, 应显示以下内容。


现在你知道如何使用 TensorBoard 了! 然而,这个例子可以在 Jupyter Notebook 中完成——TensorBoard 真正擅长的是创建交互式可视化。 我们将在接下来介绍其中一个,并在本教程结束时介绍更多。

3. 使用 TensorBoard 检查模型

TensorBoard 的优势之一是它能够将复杂的模型结构可视化。可视化我们构建的模型。

writer.add_graph(net, images)
writer.close()

现在刷新 TensorBoard 后,您应该会看到一个“Graphs”选项卡,如下所示:

在这里插入图片描述
继续并双击“Net”以查看其展开,查看构成模型的各个操作的详细视图。

TensorBoard 有一个非常方便的功能,可以在低维空间中可视化高维数据,例如图像数据; 我们接下来会介绍这个。

4. 向 TensorBoard 添加 “Projector”

我们可以通过 add_embedding 方法可视化高维数据的低维表示


# helper function
def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]

# select random images and their target indices
images, labels = select_n_random(trainset.data, trainset.targets)

# get the class labels for each image
class_labels = [classes[lab] for lab in labels]

# log embeddings
features = images.view(-1, 28 * 28)
writer.add_embedding(features,
                    metadata=class_labels,
                    label_img=images.unsqueeze(1))
writer.close()

现在在 TensorBoard 的“投影仪”选项卡中,您可以看到这 100 张图像——每张都是 784 维的——被投影到 3 维空间中。 此外,这是交互式的:您可以单击并拖动以旋转三维投影。 最后,一些使可视化更容易查看的提示:选择左上角的“颜色:标签”,以及启用“夜间模式”,这将使图像更容易看到,因为它们的背景是白色的:


现在我们已经彻底检查了我们的数据,让我们展示 TensorBoard 如何让跟踪模型训练和评估更清晰,从训练开始。

5. 使用 TensorBoard 跟踪模型训练

在前面的例子中,我们简单地每 2000 次迭代打印模型的运行损失。现在我们将把运行损失记录TensorBoard,同时查看模型通过 plot_classes_preds 函数所做的预测。

    # helper functions

    def images_to_probs(net, images):
        '''
        Generates predictions and corresponding probabilities from a trained
        network and a list of images
        '''
        output = net(images)
        # convert output probabilities to predicted class
        _, preds_tensor = torch.max(output, 1)
        preds = np.squeeze(preds_tensor.numpy())
        return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


    def plot_classes_preds(net, images, labels):
        '''
        Generates matplotlib Figure using a trained network, along with images
        and labels from a batch, that shows the network's top prediction along
        with its probability, alongside the actual label, coloring this
        information based on whether the prediction was correct or not.
        Uses the "images_to_probs" function.
        '''
        preds, probs = images_to_probs(net, images)
        # plot the images in the batch, along with predicted and true labels
        fig = plt.figure(figsize=(12, 48))
        for idx in np.arange(4):
            ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
            matplotlib_imshow(images[idx], one_channel=True)
            ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                classes[preds[idx]],
                probs[idx] * 100.0,
                classes[labels[idx]]),
                        color=("green" if preds[idx]==labels[idx].item() else "red"))
        return fig

最后,让我们使用与上一教程相同的模型训练代码来训练模型,但每 1000 批将结果写入 TensorBoard,而不是打印到控制台; 这是使用 add_scalar 函数完成的。

此外,在训练时,我们将生成一张图像,显示模型的预测与该批次中包含的四张图像的实际结果。

    running_loss = 0.0
    for epoch in range(1):  # loop over the dataset multiple times

        for i, data in enumerate(trainloader, 0):

            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data

            # zero the parameter gradients
            optimizer.zero_grad()

            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if i % 1000 == 999:    # every 1000 mini-batches...

                # ...log the running loss
                writer.add_scalar('training loss',
                                running_loss / 1000,
                                epoch * len(trainloader) + i)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                writer.add_figure('predictions vs. actuals',
                                plot_classes_preds(net, inputs, labels),
                                global_step=epoch * len(trainloader) + i)
                running_loss = 0.0
    print('Finished Training')

您现在可以查看标量选项卡以查看在 15,000 次训练迭代中绘制的运行损失:

在这里插入图片描述
此外,我们可以查看模型在整个学习过程中对任意批次所做的预测。 查看“图像”选项卡并在“预测与实际”可视化下向下滚动以查看; 这向我们展示了,例如,在仅仅 3000 次训练迭代之后,该模型已经能够区分视觉上不同的类别,例如衬衫、运动鞋和外套,尽管它不像后来的训练那样自信:

在这里插入图片描述
在之前的教程中,我们在训练模型后查看了每个类别的准确率; 在这里,我们将使用 TensorBoard 为每个类绘制精确召回曲线(这里有很好的解释)。

7. 使用 TensorBoard 评估训练模型

# 1. gets the probability predictions in a test_size x num_classes Tensor
# 2. gets the preds in a test_size Tensor
# takes ~10 seconds to run
class_probs = []
class_label = []
with torch.no_grad():
    for data in testloader:
        images, labels = data
        output = net(images)
        class_probs_batch = [F.softmax(el, dim=0) for el in output]

        class_probs.append(class_probs_batch)
        class_label.append(labels)

test_probs = torch.cat([torch.stack(batch) for batch in class_probs])
test_label = torch.cat(class_label)

# helper function
def add_pr_curve_tensorboard(class_index, test_probs, test_label, global_step=0):
    '''
    Takes in a "class_index" from 0 to 9 and plots the corresponding
    precision-recall curve
    '''
    tensorboard_truth = test_label == class_index
    tensorboard_probs = test_probs[:, class_index]

    writer.add_pr_curve(classes[class_index],
                        tensorboard_truth,
                        tensorboard_probs,
                        global_step=global_step)
    writer.close()

# plot all the pr curves
for i in range(len(classes)):
    add_pr_curve_tensorboard(i, test_probs, test_label)

您现在将看到一个“PR Curves”选项卡,其中包含每个类的精确召回曲线。 继续探索; 您会看到,在某些类别中,模型的“曲线下面积”接近 100%,而在其他类别中,该面积较低:

在这里插入图片描述
这是 TensorBoard 和 PyTorch 与其集成的介绍。当然,您可以在 Jupyter Notebook 中完成 TensorBoard 所做的一切,但使用 TensorBoard,您可以获得默认交互的视觉效果。

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值