Faster rcnn源码理解
wolf2345
但行好事,莫问前程!
展开
-
Faster rcnn源码理解(1)
这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架。好的开始吧~这里我们跟着Faster rcnn的训练流程来一步一步梳理,进入tools\train_faster_rcnn_alt_opt.py中:首先从__main__入口处进入,如下:上图中首先对终端中的命令行进行解析,获取...转载 2018-05-22 15:46:48 · 184 阅读 · 0 评论 -
Faster rcnn源码理解(2)
接着上篇的博客,咱们继续看一下Faster RCNN的代码~上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函数中,train_rpn()函数后面的部分基本没什么需要讲的了,那我们再回到训练流程中来:这一步训练的网络结构见下图:训练的第一步就这么完成了(RPN网络使用gt_roidb训练完成),还有,这里的tr...转载 2018-05-22 15:49:42 · 271 阅读 · 0 评论 -
Faster rcnn源码理解(3)
紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层:该层定义在lib>rpn>中,见该层定义:首先说一下这一层的目的是输出在特征图上所有点的anchors(经过二分类和回归);(1)输入blob:bottom[0]储存特征图信息,bottom[1]储存gt框坐标,bottom[2]储存im_info信息;(2)输出blob:top[0]存储an...转载 2018-05-22 15:50:53 · 196 阅读 · 0 评论 -
Faster rcnn源码理解(4)
上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下;我先说一下它的实现原理:RPN生成的roi区域大小是对应与输入图像大小(而且每一个roi大小都不同,因为先是禅城九种anchors,又经过回归,所以大小各不同),所以在ROIPoolingLayer层中,先将每一个roi区域映射到经过conv5的feat...转载 2018-05-22 15:52:47 · 201 阅读 · 0 评论