开源精选 - Spark个性化推荐算法

源码:https://github.com/wolf-song-ml/RecommendationSystem

实战篇

1 项目技术架构

在这里插入图片描述

2 项目涉及关键技术

  • Redis:存储用户最近评测队列
  • Mongdb:BI可视化查询
  • Elastic Search:文本关键词模糊检索索引、类别完全匹配检索、More like this基于内容推荐api
  • Flume:实时评测数据采集
  • Kafka:采集数据中间消息通道 Kafka stream:消息转发中间管道
  • Spark:spark sql、spark stream、spark M数据统计、加载数据源引擎、机器学习模型
  • ScalaNLP:JAVA矩阵计算

理论篇

1 推荐系统的意义 - 解决信息过载

  • 搜索引擎时代

分类导航:雅虎
搜索:谷歌、百度

  • 个性化时代(提高用户粘度、增加营收)

系统自动推荐相关的东西:今日头条、豆瓣、电商

2 推荐系统的分类

  • 基于人口统计学的推荐

  • 基于内容的推荐

  • 基于协同过滤的推荐

3 基于人口统计学的推荐

基于人口统计学的推荐机制(Demographic-based Recommendation)是一种最易于实现的推荐方法,它只是简单的根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。
在这里插入图片描述

4 基于内容的推荐

4.1 定义

基于内容的推荐是在推荐引擎出现之初应用最为广泛的推荐机制,它的核心思想是根据推荐物品或内容的元数据,发现物品或者内容的相关性,然后基于用户以往的喜好记录,推荐给用户相似的物品。

4.2 算法流程

  • 对于物品的特征提取——打标签(tag)
  • 对于文本信息的特征提取——关键词
  • 生成分词特征向量矩阵
  • 计算相似度,常用余弦相似度
    在这里插入图片描述

4.3 核心代码

4.3.1 spark TF-IDF

// 核心部分: 用TF-IDF从内容信息中提取电影特征向量
val movieRecs = movieFeatures.cartesian(movieFeatures)
  .filter{
    // 把自己跟自己的配对过滤掉
    case (a, b) => a._1 != b._1
  }
  .map{
    case (a, b) => {
      val simScore = this.consinSim(a._2, b._2)
      ( a._1, ( b._1, simScore ) )
    }
  }
  .filter(_._2._2 > 0.6)    // 过滤出相似度大于0.6的
  .groupByKey()
  .map{
    case (mid, items) => MovieRecs( mid, items.toList.sortWith(_._2 > _._2).map(x => Recommendation(x._1, x._2)) )
  }
  .toDF()

4.3.2 ElasticSearch More like this

MoreLikeThisQueryBuilder query = QueryBuilders.moreLikeThisQuery(
        /*new String[]{"name", "descri", "genres", "actors", "directors", "tags"},*/
        new MoreLikeThisQueryBuilder.Item[]{new MoreLikeThisQueryBuilder.Item(Constant.ES_INDEX,
                Constant.ES_MOVIE_TYPE, String.valueOf(mid))});

5 基于协同过滤的推荐

5.1基于用户的协同过滤(UserCF)

计算用户的相似度,推荐相似用户的喜好
在这里插入图片描述

5.2 基于物品的协同过滤(ItemCF重点)

计算物品的相似度,推荐相似度高的物品(不同于基于内容的推荐)
在这里插入图片描述

5.2.1核心算法:计算同现相似度

在这里插入图片描述

5.2.2 核心算法实例

// ( mid1, (mid2, score) )
val simDF = cooccurrenceDF.map{
  row =>
    val coocSim = cooccurrenceSim( row.getAs[Long]("cocount"), row.getAs[Long]("count1"),
      row.getAs[Long]("count2") )
    ( row.getInt(0), ( row.getInt(1), coocSim ) )
}
  .rdd
  .groupByKey()
  .map{
    case (mid, recs) =>
      MoviesRecs( mid, recs.toList.sortWith(_._2>_._2).take(MAX_RECOMMENDATION)
        .map(x=>Recommendation(x._1,x._2)) )
  }
  .toDF()

5.3 基于隐语义算法模型推荐

5.3.1 思想

找到隐藏因子,可以对user和item进行关联
在这里插入图片描述

5.3.2 算法公式

在这里插入图片描述
在这里插入图片描述

5.3.3 核心算法实例

// 训练隐语义模型:Rating(user:Int, product:Int, rating:Double)
val trainData = ratingRDD.map(x => Rating(x._1, x._2, x._3))
// 多个变量赋值
val (rank, iterations, lambda) = (200, 5, 0.1)
val model = ALS.train(trainData, rank, iterations, lambda)

// 从rating数据中提取所有的uid和mid,并去重
val userRDD = ratingRDD.map(_._1).distinct()
val movieRDD = ratingRDD.map(_._2).distinct()
val userMovies = userRDD.cartesian(movieRDD)

// 调用model的predict方法预测评分
val preRatings = model.predict(userMovies)

val userRecs = preRatings
  .filter(_.rating > 0)
  .map(rating => (rating.user, (rating.product, rating.rating))) // Rating->(uid, (mid, score))
  .groupByKey()
  .map {
    case (uid, recs) => UserRecs(uid, recs.toList.sortWith(_._2 > _._2).take(USER_MAX_RECOMMENDATION).map(x => Recommendation(x._1, x._2)))
  }
  .toDF()

5.3.4 LFM模型评估、迭代与调优

通常的做法是计算均方根误差(RMSE),考察预测评分与实际评分之间的误差。
RMSE
有了RMSE,我们可以就可以通过多次调整参数值,来选取RMSE最小的一组作为我们模型的优化选择。

 /**
    * LFM迭代调参
    * @param trainData
    * @param testData
    */
  def adjustALSParam(trainData: RDD[Rating], testData: RDD[Rating]): Unit = {
    val result = for (rank <- Array(50, 100, 200, 300); lambda <- Array(0.01, 0.1, 1))
      yield {
        val model = ALS.train(trainData, rank, 5, lambda)
        val rmse = getRMSE(model, testData)
        (rank, lambda, rmse)
      }

    // 控制台打印输出最优参数
    println(result.minBy(_._3))
  }
  /**
    * 均方误差的根
    * @param model
    * @param data
    * @return
    */
  def getRMSE(model: MatrixFactorizationModel, data: RDD[Rating]): Double = {
    // 计算预测评分
    val userProducts = data.map(item => (item.user, item.product))
    val predictRating = model.predict(userProducts)

    // 以uid,mid作为外键,inner join实际观测值和预测值
    val actual = data.map(item => ((item.user, item.product), item.rating))
    val predict = predictRating.map(item => ((item.user, item.product), item.rating))

    // 内连接得到(uid, mid),(actual, predict)
    sqrt(
      actual.join(predict).map {
        case ((uid, mid), (actual, pre)) => val err = actual - pre; err * err
      }.mean()
    )
  }

6 实时推荐算法

6.1算法设计

首先,获取用户u 按时间顺序最近的K 个评分,记为RK;获取商品p 的最相似的K 个商品集合,记为S;
然后,对于每个商品qS ,计算其推荐优先级,计算公式如下:
实时推荐
其中:
表示用户u 对商品r 的评分;
sim(q,r)表示商品q 与商品r 的相似度,设定最小相似度为0.6,当商品q和商品r 相似度低于0.6 的阈值,则视为两者不相关并忽略;
sim_sum 表示q 与RK 中商品相似度大于最小阈值的个数;
incount 表示RK 中与商品q 相似的、且本身评分较高(>=3)的商品个数;
recount 表示RK 中与商品q 相似的、且本身评分较低(❤️)的商品个数;

6.2 削弱因子

将增强因子增加到上述的预测评分中,并减去削弱因子,得到最终的q 商品对于u 的推荐优先级。在计算完每个候选商品q 的后,将生成一组<商品q 的ID, q 的推荐优先级>的列表updatedList:
在这里插入图片描述

 /**
    * 计算备选元素与用户最近评分物品相似度+加强减弱因子:核心算法
    * @param candidateMovies
    * @param userRecentlyRatings
    * @param simMovies
    * @return
    */
  def computeMovieScores(candidateMovies: Array[Int], userRecentlyRatings: Array[(Int, Double)],
                         simMovies: scala.collection.Map[Int, scala.collection.immutable.Map[Int, Double]]): Array[(Int, Double)] = {
    val scores = scala.collection.mutable.ArrayBuffer[(Int, Double)]()
    // 增强减弱因子
    val increMap = scala.collection.mutable.HashMap[Int, Int]()
    val decreMap = scala.collection.mutable.HashMap[Int, Int]()

    for (candidateMovie <- candidateMovies; userRecentlyRating <- userRecentlyRatings) {
      val simScore = getMoviesSimScore(candidateMovie, userRecentlyRating._1, simMovies)

      if (simScore > 0.7) {
        scores += ((candidateMovie, simScore * userRecentlyRating._2))
        if (userRecentlyRating._2 > 3) {
          increMap(candidateMovie) = increMap.getOrElse(candidateMovie, 0) + 1
        } else {
          decreMap(candidateMovie) = decreMap.getOrElse(candidateMovie, 0) + 1
        }
      }
    }

    scores.groupBy(_._1).map {
      case (mid, scoreList) =>
        (mid, scoreList.map(_._2).sum / scoreList.length + log(increMap.getOrElse(mid, 1)) - log(decreMap.getOrElse(mid, 1)))
    }.toArray.sortWith(_._2 > _._2)
  }

7 冷启动问题

整个推荐系统更多的是依赖于用于的偏好信息进行商品的推荐,那么就会存在一个问题,对于新注册的用户是没有任何偏好信息记录的,那这个时候推荐就会出现问题,导致没有任何推荐的项目出现。
处理这个问题一般是通过当用户首次登陆时,为用户提供交互式的窗口来获取用户对于物品的偏好,让用户勾选预设的兴趣标签。当获取用户的偏好之后,就可以直接给出相应类型商品的推荐

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值