Python数据分析与展示(1)——NumPy库入门

最近在中国大学mooc网学习Python数据分析与展示相关知识,记入下来,以供参考。

NumPy库入门

NumPy简介

NumPy是一个开源的Python科学计算基础库,包含:
• 一个强大的N维数组对象ndarray
• 广播功能函数
• 整合C/C++/Fortran代码的工具
• 线性代数、傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础

NumPy的数组对象:ndarray

Python已有列表类型,为什么需要一个数组对象(类型)?

• 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据
• 设置专门的数组对象,经过优化,可以提升这类应用的运算速度
• 数组对象采用相同的数据类型,有助于节省运算和存储空间

利用np.array()生成一个ndarray数组,np.array()输出成[ ]形式,元素由空格分割

ndarray对象的属性

属性说明
.ndim秩,即轴的数量或维度的数量
.shapendarray对象的尺度,对于矩阵,n行m列
.sizendarray对象元素的个数,相当于.shape中n*m的值
.dtypendarray对象的元素类型
.itemsizendarray对象中每个元素的大小,以字节为单位

ndarray数组的元素类型

数据类型说明
bool布尔类型,True或False
intc与C语言中的int类型一致,一般是int32或int64
intp用于索引的整数,与C语言中ssize_t一致,int32或int64
int8字节长度的整数,取值:[‐128, 127]
int1616位长度的整数,取值:[‐32768, 32767]
int3232位长度的整数,取值:[‐231, 231‐1]
int6464位长度的整数,取值:[‐263, 263‐1]
uint88位无符号整数,取值:[0, 255]
uint1616位无符号整数,取值:[0, 65535]
uint3232位无符号整数,取值:[0, 232‐1]
uint6432位无符号整数,取值:[0, 264‐1]
float1616位半精度浮点数:1位符号位,5位指数,10位尾数
float3232位半精度浮点数:1位符号位,8位指数,23位尾数
float6464位半精度浮点数:1位符号位,11位指数,52位尾数
complex64复数类型,实部和虚部都是32位浮点数
complex128复数类型,实部和虚部都是64位浮点数

ndarray数组的创建方法

1.从Python中的列表、元组等类型创建ndarray数组

x = np.array(list/tuple)
x = np.array(list/tuple, dtype=np.float32)

当np.array()不指定dtype时,NumPy将根据数据情况关联一个dtype类型

2.使用NumPy中函数创建ndarray数组,如:arange, ones, zeros等

函数说明
np.arange(n)类似range()函数,返回ndarray类型,元素从0到n‐1
np.ones(shape)根据shape生成一个全1数组,shape是元组类型
np.zeros(shape)根据shape生成一个全0数组,shape是元组类型
np.full(shape,val)根据shape生成一个数组,每个元素值都是val
np.eye(n)创建一个正方的n*n单位矩阵,对角线为1,其余为0
np.ones_like(a)根据数组a的形状生成一个全1数组
np.zeros_like(a)根据数组a的形状生成一个全0数组
np.full_like(a,val)根据数组a的形状生成一个数组,每个元素值都是val
np.linspace()根据起止数据等间距地填充数据,形成数组
np.concatenate()将两个或多个数组合并成一个新的数组
In [2]:import numpy as np

In [3]:a = np.linspace(1,10,4)#1是起始值,10是最后一个元素的值,4指数组包含四个元素

In [4]:a
Out[4]: array([  1.,   4.,   7.,  10.])

In [5]:b = np.linspace(1,10,4,endpoint=False)
#endpoint表示最后一个元素是否是数组中的一个

In [6]:b
Out[6]: array([ 1.  ,  3.25,  5.5 ,  7.75])

ndarray数组的变换

对于创建后的ndarray数组,可以对其进行维度变换和元素类型变换

方法说明
.reshape(shape)不改变数组元素,返回一个shape形状的数组,原数组不变
.resize(shape)与.reshape()功能一致,但修改原数组
.swapaxes(ax1,ax2)将数组n个维度中两个维度进行调换
.flatten()对数组进行降维,返回折叠后的一维数组,原数组不变

a = np.ones((2,3,4), dtype=np.int32)

In [13]:a = np.ones((2,3,4))
In [14]:a
Out[14]: 
array([[[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]],

       [[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]]])
In [15]:a = np.ones((2,3,4), dtype=np.int32)

In [16]:a
Out[16]: 
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]])

new_a = a.astype(new_type)
astype()方法一定会创建新的数组(原始数据的一个拷贝),即使两个类型一致

In [17]:b = a.astype(np.float)

In [18]:b
Out[18]: 
array([[[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]],

       [[ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.],
        [ 1.,  1.,  1.,  1.]]])

ndarray数组向列表的转换

ls = a.tolist()

In [19]:a.tolist()
Out[19]: 
[[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]],
 [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]]

ndarray数组的操作

数组的索引和切片
索引:获取数组中特定位置元素的过程
切片:获取数组元素子集的过程
起始编号: 终止编号(不含): 步长,3元素冒号分割这里写图片描述

ndarray数组的运算

1.数组与标量之间的运算:数组与标量之间的运算作用于数组的每一个元素
2.NumPy一元函数
对ndarray中的数据执行元素级运算的函数

函数说明
np.abs(x) np.fabs(x)计算数组各元素的绝对值
np.sqrt(x)计算数组各元素的平方根
np.square(x)计算数组各元素的平方
np.log(x) np.log10(x) np.log2(x)计算数组各元素的自然对数、10底对数和2底对数
np.ceil(x) np.floor(x)计算数组各元素的ceiling值或floor值
np.rint(x)计算数组各元素的四舍五入值
np.modf(x)将数组各元素的小数和整数部分以两个独立数组形式返回
np.cos(x) np.cosh(x)
np.sin(x) np.sinh(x)
np.tan(x) np.tanh(x)

计算数组各元素的普通型和双曲型三角函数
np.exp(x)计算数组各元素的指数值
np.sign(x)计算数组各元素的符号值,1(+), 0, ‐1(‐)

3.NumPy二元函数

函数说明
+-* / **两个数组各元素进行对应运算
np.maximum(x,y) np.fmax()
np.minimum(x,y) np.fmin()
元素级的最大值/最小值计算
np.mod(x,y)元素级的模运算
np.copysign(x,y)将数组y中各元素值的符号赋值给数组x对应元素
<> >= <= == !=算术比较,产生布尔型数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值