Python数据分析与展示(6)——Pandas数据特征分析

最近在中国大学mooc网学习Python数据分析与展示相关知识,记入下来,以供参考。

Pandas数据特征分析

数据的排序

.sort_index()方法在指定轴上根据索引进行排序,默认升序
.sort_index(axis=0, ascending=True)

.sort_values()方法在指定轴上根据数值进行排序,默认升序
Series.sort_values(axis=0, ascending=True)
DataFrame.sort_values(by, axis=0, ascending=True)
by : axis轴上的某个索引或索引列表

数据的基本统计分析

适用于Series和DataFrame类型

方法说明
.sum()计算数据的总和,按0轴计算,下同
.count()非NaN值的数量
.mean() .median()计算数据的算术平均值、算术中位数
.var() .std()计算数据的方差、标准差
.min() .max()计算数据的最小值、最大值
.describe()针对0轴(各列)的统计汇总


适用于Series类型

方法说明
.argmin() .argmax()计算数据最大值、最小值所在位置的索引位置(自动索引)
.idxmin() .idxmax()计算数据最大值、最小值所在位置的索引(自定义索引)

数据的累积统计分析

适用于Series和DataFrame类型,累计计算

方法说明
.cumsum()依次给出前1、2、…、n个数的和
.cumprod()依次给出前1、2、…、n个数的积
.cummax()依次给出前1、2、…、n个数的最大值
.cummin()依次给出前1、2、…、n个数的最小值


适用于Series和DataFrame类型,滚动计算(窗口计算)

方法说明
.rolling(w).sum()依次计算相邻w个元素的和
.rolling(w).mean()依次计算相邻w个元素的算术平均值
.rolling(w).var()依次计算相邻w个元素的方差
.rolling(w).std()依次计算相邻w个元素的标准差
.rolling(w).min() .max()依次计算相邻w个元素的最小值和最大值

数据的相关分析

适用于Series和DataFrame类型

方法说明
.cov()计算协方差矩阵
.corr()计算相关系数矩阵, Pearson、Spearman、Kendall等系数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值