BZOJ3653: 谈笑风生

题目描述

设T 为一棵有根树,我们做如下的定义:
? 设a和b为T 中的两个不同节点。如果a是b的祖先,那么称“a比b不知道
高明到哪里去了”。
? 设a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定
常数x,那么称“a 与b 谈笑风生”。
给定一棵n个节点的有根树T,节点的编号为1 到 n,根节点为1号节点。你需
要回答q 个询问,询问给定两个整数p和k,问有多少个有序三元组(a;b;c)满足:
1. a、b和 c为 T 中三个不同的点,且 a为p 号节点;
2. a和b 都比 c不知道高明到哪里去了;
3. a和b 谈笑风生。这里谈笑风生中的常数为给定的 k。


输入

第一行含有两个正整数n和q,分别代表有根树的点数与询问的个数。
接下来n - 1行,每行描述一条树上的边。每行含有两个整数u和v,代表在节点u和v之间有一条边。
接下来q行,每行描述一个操作。第i行含有两个整数,分别表示第i个询问的p和k。
1<=P<=N
1<=K<=N
N<=300000
Q<=300000


输出

输出 q 行,每行对应一个询问,代表询问的答案。


Solution

siz[i] s i z [ i ] 为i的子树大小(不包括i)
首先a和b一定是子孙关系
当b是a的祖先的时候, ans=min(k,dep[p]1)siz[p] a n s = m i n ( k , d e p [ p ] − 1 ) ∗ s i z [ p ]
当a是b的祖先的时候,答案就是在a的子树中深度小于 dep[p]+k d e p [ p ] + k 的siz和
对于子树,我们想到子树的DFS序是连续的
问题就转化成了,求所有
dep[p]+1<=dep[i]<=dep[p]+k,dfn[p]<dfn[i]<=dfn[p]+siz[p] d e p [ p ] + 1 <= d e p [ i ] <= d e p [ p ] + k , d f n [ p ] < d f n [ i ] <= d f n [ p ] + s i z [ p ] siz[i] s i z [ i ]
主席树就可以搞,权值维护的是dep的区间

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 3000010
#define MID Mid=(l+r)>>1
typedef int int_;
#define int long long
struct Edge{
    int u,v,next;
}E[maxn<<1];
int ecnt=0,head[maxn],siz[maxn];
int dfn[maxn],ps[maxn],dep[maxn];
int sz=0,tr[maxn<<1];
int ls[maxn<<1],rs[maxn<<1];
inline int read(){
    int ret=0,ff=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') ff=-ff;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        ret=ret*10+ch-'0';
        ch=getchar();
    }
    return ret*ff;
}
void addedge(int u,int v){
    E[++ecnt].u=u;
    E[ecnt].v=v;
    E[ecnt].next=head[u];
    head[u]=ecnt;
}
int ord=0,mx=0;
void dfs(int x,int fx){
    dfn[x]=++ord;
    ps[ord]=x;
    dep[x]=dep[fx]+1;
    mx=max(dep[x],mx);
    for(int i=head[x];i;i=E[i].next){
        int v=E[i].v;
        if(v==fx) continue;
        dfs(v,x);
        siz[x]+=siz[v]+1;
    }
}
void build(int &x,int y,int l,int r,int pos,int val){
    x=++sz;
    tr[x]=tr[y]+val;
    if(l==r) return ;
    int MID;
    ls[x]=ls[y],rs[x]=rs[y];
    if(pos<=Mid)build(ls[x],ls[y],l,Mid,pos,val);
    else build(rs[x],rs[y],Mid+1,r,pos,val);
}
int query(int o,int l,int r,int ql,int qr){
    if(ql<=l&&r<=qr) return tr[o];
    int MID,ret=0;
    if(ql<=Mid) ret+=query(ls[o],l,Mid,ql,qr);
    if(qr>Mid) ret+=query(rs[o],Mid+1,r,ql,qr);
    return ret;
}
int rt[maxn];
int_ main(){
    freopen("bzoj3653.in","r",stdin);
    int n=read(),q=read();
    for(int i=1;i<n;++i){
        int aa=read(),bb=read();
        addedge(aa,bb);
        addedge(bb,aa);
    }
    dfs(1,0);
    for(int i=1;i<=n;++i) build(rt[i],rt[i-1],1,mx,dep[ps[i]],siz[ps[i]]);
    while(q--){
        int p=read(),k=read();
        int ans=min(k,dep[p]-1)*siz[p];
        ans+=query(rt[dfn[p]+siz[p]],1,mx,min(mx,dep[p]+1),min(mx,dep[p]+k));
        ans-=query(rt[dfn[p]-1],1,mx,min(mx,dep[p]+1),min(mx,dep[p]+k));
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值