题目描述
设T 为一棵有根树,我们做如下的定义:
? 设a和b为T 中的两个不同节点。如果a是b的祖先,那么称“a比b不知道
高明到哪里去了”。
? 设a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定
常数x,那么称“a 与b 谈笑风生”。
给定一棵n个节点的有根树T,节点的编号为1 到 n,根节点为1号节点。你需
要回答q 个询问,询问给定两个整数p和k,问有多少个有序三元组(a;b;c)满足:
1. a、b和 c为 T 中三个不同的点,且 a为p 号节点;
2. a和b 都比 c不知道高明到哪里去了;
3. a和b 谈笑风生。这里谈笑风生中的常数为给定的 k。
输入
第一行含有两个正整数n和q,分别代表有根树的点数与询问的个数。
接下来n - 1行,每行描述一条树上的边。每行含有两个整数u和v,代表在节点u和v之间有一条边。
接下来q行,每行描述一个操作。第i行含有两个整数,分别表示第i个询问的p和k。
1<=P<=N
1<=K<=N
N<=300000
Q<=300000
输出
输出 q 行,每行对应一个询问,代表询问的答案。
Solution
siz[i]
s
i
z
[
i
]
为i的子树大小(不包括i)
首先a和b一定是子孙关系
当b是a的祖先的时候,
ans=min(k,dep[p]−1)∗siz[p]
a
n
s
=
m
i
n
(
k
,
d
e
p
[
p
]
−
1
)
∗
s
i
z
[
p
]
当a是b的祖先的时候,答案就是在a的子树中深度小于
dep[p]+k
d
e
p
[
p
]
+
k
的siz和
对于子树,我们想到子树的DFS序是连续的
问题就转化成了,求所有
dep[p]+1<=dep[i]<=dep[p]+k,dfn[p]<dfn[i]<=dfn[p]+siz[p]
d
e
p
[
p
]
+
1
<=
d
e
p
[
i
]
<=
d
e
p
[
p
]
+
k
,
d
f
n
[
p
]
<
d
f
n
[
i
]
<=
d
f
n
[
p
]
+
s
i
z
[
p
]
的
siz[i]
s
i
z
[
i
]
主席树就可以搞,权值维护的是dep的区间
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 3000010
#define MID Mid=(l+r)>>1
typedef int int_;
#define int long long
struct Edge{
int u,v,next;
}E[maxn<<1];
int ecnt=0,head[maxn],siz[maxn];
int dfn[maxn],ps[maxn],dep[maxn];
int sz=0,tr[maxn<<1];
int ls[maxn<<1],rs[maxn<<1];
inline int read(){
int ret=0,ff=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') ff=-ff;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
ret=ret*10+ch-'0';
ch=getchar();
}
return ret*ff;
}
void addedge(int u,int v){
E[++ecnt].u=u;
E[ecnt].v=v;
E[ecnt].next=head[u];
head[u]=ecnt;
}
int ord=0,mx=0;
void dfs(int x,int fx){
dfn[x]=++ord;
ps[ord]=x;
dep[x]=dep[fx]+1;
mx=max(dep[x],mx);
for(int i=head[x];i;i=E[i].next){
int v=E[i].v;
if(v==fx) continue;
dfs(v,x);
siz[x]+=siz[v]+1;
}
}
void build(int &x,int y,int l,int r,int pos,int val){
x=++sz;
tr[x]=tr[y]+val;
if(l==r) return ;
int MID;
ls[x]=ls[y],rs[x]=rs[y];
if(pos<=Mid)build(ls[x],ls[y],l,Mid,pos,val);
else build(rs[x],rs[y],Mid+1,r,pos,val);
}
int query(int o,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return tr[o];
int MID,ret=0;
if(ql<=Mid) ret+=query(ls[o],l,Mid,ql,qr);
if(qr>Mid) ret+=query(rs[o],Mid+1,r,ql,qr);
return ret;
}
int rt[maxn];
int_ main(){
freopen("bzoj3653.in","r",stdin);
int n=read(),q=read();
for(int i=1;i<n;++i){
int aa=read(),bb=read();
addedge(aa,bb);
addedge(bb,aa);
}
dfs(1,0);
for(int i=1;i<=n;++i) build(rt[i],rt[i-1],1,mx,dep[ps[i]],siz[ps[i]]);
while(q--){
int p=read(),k=read();
int ans=min(k,dep[p]-1)*siz[p];
ans+=query(rt[dfn[p]+siz[p]],1,mx,min(mx,dep[p]+1),min(mx,dep[p]+k));
ans-=query(rt[dfn[p]-1],1,mx,min(mx,dep[p]+1),min(mx,dep[p]+k));
printf("%lld\n",ans);
}
}