1 素数
素数即质数,指在大于1的自然数中,除了1和此整数自身外无法被其它自然数整除的数。
1.1 试除法
该方法用于验证一个数是否为素数。例求x是否为素数,只需要验证1到中是否存在一个数位x的约数,即能被x整除。
1.2 Eratosthenes方法
该方法用于高效的求出小于任何数N的所有素数。该方法的原理为先用一个筛子存放所有的数,显然其中最小的为2且为质数,这时可以过滤掉2的任何倍数。紧接着寻找比2大的最小数3,则过滤掉所有3的倍数。如此,比已经找到的质数大的最小数即为素数,然后删除该素数的所有倍数。最终将筛选出所有小于N的素数。
参考代码:
void test()
{
int prime[PRIMEMAX + 1];
for (int i = 2; i < PRIMEMAX; i++)
{
prime[i] = 1;
}
for (int i = 2; i * i <= PRIMEMAX; i++)
{
if (1 == prime[i])
{
for (int j = 2 * i; j <=PRIMEMAX; j++)
{
if (0 == j % i)
{
prime[j] = 0;
}
}
}
}
for (int i = 2; i < PRIMEMAX; i++)
{
if (1 == prime[i])
{
cout<<setw(4)<<i;
if (0 == i % 16)
{
cout<<endl;
}
}
}
}
2 因式分解
这里的因式分解是指将一个数分解成若干个素数乘积的形式。例如12 = 2 * 2 * 3。算数基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。因此素数也被称为自然数的“建筑的基石”。可以用以下方法分解N。
2.1 试除法
让N去除从1到的任意数,直到商为1则所有的能被整除的数即为N的一项,若某个数能被整除m次,则N的因式中应该还有m个该数。
例如N=12,则:
N=12能整除2,得6……N的一个因子为2
N=6能整除2,得3……N的一个因子为2
N=3能整除3,得1……N的一个因子为3
因为商为1,则停止运算可得N=12=2*2*3为N的因式分解。
2.2 素数表法
试除法存在的问题为不是所有的被除数都为素数,例如N=30,当整除2和3后,又去试除4,显然这是没有必要的。因此可以预处理一张素数表,继2和3之后去试除5而不再是4。
参考代码如下:
#define MAXNUM110000
int num1;
intprimetable[MAXNUM1];
void prime()
{
int temp[MAXNUM1];
int genprime = 0;
for (int i = 0; i < MAXNUM1; i++)
{
temp[i] = 1;
primetable[i] = 1;
}
for (int i = 2; i < MAXNUM1; i++)
{
if (1 == temp[i])
{
primetable[genprime++] = i;
for (int j = 2*i; j <MAXNUM1; j++)
{
if (0 == j % i)
{
temp[j] = 0;
}
}
}
}
}
void factor()
{
int num = num1;
cout<<num<<" = ";
for (int i = 0; primetable[i] *primetable[i] <= num;)
{
if (0 == num % primetable[i])
{
cout<<primetable[i]<<"*";
num = num / primetable[i];
}
else
{
++i;
}
}
cout<<num<<endl;
}
int main()
{
prime();
factor();
}
3 完美数
如果一个数n,其真约数(比n小的约数)的总和等于n,则称之为完美数。例如6 = 1 + 2 + 3,28 = 1 + 2 + 4 + 7 + 14。
3.1 朴素法
求出数n的所有真约数,然后相加判断是否与n相等即可,若相等则是完美数,反之不是。
3.1 因式分解法
由算数基本定理可得任何数n均可分解为若干素数的乘积,而一个数的所有约束应该为所有这些约数的组合和1。例如n=12=2*2*3的分解素数为2、2以及3,他们的组合数为2、4、6、12,显然与1一起组成了n=12的所有约束。若n为完美数则有n分解的素数的所有组合数的和加上1为n的2倍。例如:
2 * 28 = 1 + 2 + 4 + 7 + 14 + 28 = (20 + 21 + 22)*(70 + 71)
显然等式的右边为用n=28的分解成的素数组成,即若某一个素数x有m个,则组合数中可以包含0、1……m个,对约数的贡献分别为x0, x1……xm。
完美数的求解总共分为三步:
(1) 求出一定数目的素数表
(2) 利用素数表求指定数的因式分解
(3) 利用因式分解求所有真约数和,并判断是否为完美数
参考代码:
#define N 1000
#define P 10000
int prime(int*pNum)
{
int i, j;
int prime[N+1];
for(i = 2; i <= N; i++)
prime[i] = 1;
for(i = 2; i*i <= N; i++)
{
if(prime[i] == 1)
{
for(j = 2*i; j <= N; j++)
{
if(j % i == 0)
prime[j] = 0;
}
}
}
for(i = 2, j = 0; i < N; i++)
{
if(prime[i] == 1)
pNum[j++] = i;
}
return j;
}
int factor(int*table, int num, int* frecord)
{
int i, k;
for(i = 0, k = 0; table[i] * table[i]<= num;)
{
if(num % table[i] == 0)
{
frecord[k] = table[i];
k++;
num /= table[i];
}
else
i++;
}
frecord[k] = num;
return k+1;
}
int fsum(int*farr, int c)
{
int i, r, s, q;
i = 0;
r = 1;
s = 1;
q = 1;
while(i < c)
{
do
{
r *= farr[i];
q += r;
i++;
} while(i < c-1 &&farr[i-1] == farr[i]);
s *= q;
r = 1;
q = 1;
}
return s / 2;
}
int main(void)
{
int ptable[N+1] = {0}; // 储存质数表
int fact[N+1] = {0}; // 储存因式分解结果
int count1, count2, i;
count1 = prime(ptable);
for(i = 0; i <= P; i++)
{
count2 = factor(ptable, i, fact);
if(i == fsum(fact, count2))
printf("Perfect Number:%d\n", i);
}
printf("\n");
return 0;
}