机器学习基本概念理解

本文深入探讨了机器学习的基础概念,包括模型的三要素:模型、策略和算法。详细介绍了常见的损失函数,如0-1损失、平方损失、绝对值损失和对数损失,并解释了它们在分类和回归任务中的应用。此外,还讨论了正则化项,如L0、L1和L2范数,以及它们在防止过拟合中的作用。最后,提到了模型性能评估方法,如留出法、交叉验证和自助法,强调了评估模型泛化能力的重要性。
摘要由CSDN通过智能技术生成

这一篇文章主要探讨机器学习中的一些基本概念。主要包括以下部分:
1. 机器学习的三要素
2. 机器学习中常用的损失函数,重点分析对数损失函数的意义
3. 常用的模型的正则化项及其实际意义
4. 交叉验证与模型的性能度量

注:以下内容为自己学习西瓜书和《统计学习方法》过程中的总结,部分为自己的认识,错误之处烦请指出。

一、机器学习三要素

  李航博士的书中提到任何统计学习方法(我理解为传统的机器学习方法)由三部分组成:模型、策略、算法。以下自己用一个简单的回归问题来理解这三个要素。
  任务为从一堆已知的 XY ( X , Y ) ( XRn X ∈ R n 即每一个实例的输入有n个特征)的数据集中学到某一个函数 Y=f(X) Y = f ( X ) ,对于新给定的一个 X X 我们能正确的得到其输出 Y 的值。
  那么三要素中的模型即是指的我们上述学到的函数表达式的形式。比如我们的模型为简单的线性模型,则模型即为

Y=ω1X(1)+ω2X(2)+...+ωnX(n)+b Y = ω 1 X ( 1 ) + ω 2 X ( 2 ) + . . . + ω n X ( n ) + b

当然如果采用其他模型,则函数表达式的形式会不一样。也有可能为没有具体函数的启发式的模型比如KNN这种,学习一个规则(K临近),对于每一个新输入的实例根据其规则给定一个输出。
  当我们确定了一个模型时,下一步就是要确定模型中的每一个参数来获得最优的模型。那么策略即为我们学习最优模型的准则,也即选择参数(即每一个 ωi ω i )的准则。这里就要引入损失函数来定量的衡量我们模型的好坏,关于常用的损失函数下一节会提到。当我们确定了损失函数 L(Yf(X)) L ( Y , f ( X ) ) 后就可以衡量该模型的好坏了。理论上假设我们观测的数据都是来自某一特定的联合分布 P(X,Y) P ( X , Y ) 那么对于模型 Y=f(X) Y = f ( X ) 关于该联合分布的期望损失(或者称为风险函数)定义为:
Rexp(f)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值