1、第一章
1.1 第一类题型:古典概型
1.1.1 无放回:越抽越少
1.1.2 有放回
1.2 几何概型
题干形如:一个区间里面取两个数,这两个数怎么样怎么样的概率。
1.3 求事件的概率
画图
1.4 事件独立性
根据相互独立,就能多一个已知,然后再去画图求解
1.5 条件概率
1.6 全概率公式
1.7 贝叶斯公式
2、第二章:离散型
2.1 一维离散型求分布律
2.2 一维离散型求期望方差
2.3 二维离散行求分布律
2.4 二维离散行求边缘分布律
3、第三章
3.1 一维连续性求分布律
例题:
3.2 一维连续性求 F
把求F转换为求P,然后就和3.1一样了
3.3 一维连续性已知 F 求 f
3.4 一维连续性已知 f 求 f
例题:
3.5 一维连续性求期望、方差
4、第四章:二维连续性
4.1
做题步骤:
4.2 已知 f(x, y)
求概率 P
例题:
4.3 已知 f(x, y)
求 F
其实就是求 P
4.4 已知 f(x, y)
求 fz(z)
例题:
4.5 已知 f(x, y)
求 f(x)
、f(y)
边缘概率密度
例题:
4.6 已知 f(x, y)
求期望和方差
第①步就是 4.5 的题型
4.7 已知 F(x, y)
求 f(x, y)
例题:
4.8 已知 F(x, y)
求 F(x)
、F(y)
例题:
5、第五章:常见的分布
5.1 均匀分布
5.2 泊松分布
5.3 指数分布
5.4 一维正态分布
μ 叫做 均值
σ 叫做 标准差,他的平方叫做方差
例题:
5.5 二维正态分布
例题:
5.6 二项分布
例题:
6、第六章
6.1 协方差、相关系数
Cov 叫协方差
ρ 叫相关系数
例题:
6.2 不相关、相互独立时的期望、方差
例题:
6.3 切比雪夫不等式
例题:
6.4 大数定律
例题:
6.5 中心极限定理
例题:
7、 参数估计
7.1 矩估计法
7.2 极大似然估计法
7.3 无偏估计
7.4 区间估计
8、假设检验
8.1 假设检验大题
判断
H0可能的式子:
s怎么算: