一种USM锐化算法的原理及其实现

本文介绍了USM(Unsharp Masking)锐化算法的原理和实现过程,通过增强图像高频部分来提高图像清晰度。算法涉及高通滤波、离散拉普拉斯算子以及Photoshop中的应用,包括半径、数量和阈值三个参数的调整。在实际应用中,使用GPU实现能实现实时处理,且在增强图像清晰度的同时,对噪声抑制效果良好。
摘要由CSDN通过智能技术生成

参考:https://www.cnblogs.com/Imageshop/archive/2013/05/19/3086388.html

      其实各种锐化都是通过增强图像的高频部分来实现,为达到这个目的,通常可以使用经典USM技术来实现。这个技术的流程可用下图来实现:

                                 

 用具体的公式表达即为:

                   y(n,m)=x(n,m)+λz(n,m)                                                      1

      其中, x(n,m)为输入图像,y(n,m)为输出图像,而z(n,m)为校正信号,一般是通过对x进行高通滤波获取。λ是用于控制增强效果强度。

      在传统锐化一般通过各种滤波算子来获取高频分量,例如离散拉普拉斯算子及其扩展模板:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值