keras下Convolution1D与Convolution2D的区别

from keras.models import Sequential
from keras.layers.core import Flatten
from keras.layers.convolutional import Convolution2D,Convolution1D
#Convolution2D
model = Sequential()
model.add(Convolution2D(64, 3, 3, border_mode=“same”, input_shape=(32, 32,3)))
print(model.output_shape)#model.output_shape==(None, 32, 32, 64)
model.add(Flatten())
print(model.output_shape)#model.output_shape==(None, 65536)
model = Sequential()
model.add(Convolution1D(64, 3, border_mode=‘same’, input_shape=(10, 32)))
print(model.output_shape)
model.add(Convolution1D(32, 3, border_mode=‘same’))
print(model.output_shape)
#Convolution1D

model = Sequential()
model.add(Convolution1D(64, 3, border_mode=‘same’, input_shape=(10, 32)))
print(model.output_shape)#(None, 10, 64)
model.add(Convolution1D(32, 3, border_mode=‘same’))
print(model.output_shape)#(None, 10, 32)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值